Studies Leading to Potent, Dual Inhibitors of Bcl-2 and Bcl-xL

Milan Bruncko, ${ }^{\dagger, \S}$ Thorsten K. Oost, ${ }^{\dagger, \S}$ Barbara A. Belli, ${ }^{\ddagger}$ Hong Ding, ${ }^{\dagger}$ Mary K. Joseph, ${ }^{\dagger}$ Aaron Kunzer, ${ }^{\dagger}$ Darlene Martineau, ${ }^{\dagger}$ William J. McClellan, ${ }^{\dagger}$ Michael Mitten, ${ }^{\dagger}$ Shi-Chung Ng, ${ }^{\dagger}$ Paul M. Nimmer, ${ }^{\dagger}$ Tilman Oltersdorf, ${ }^{\dagger}$ Cheol-Min Park, ${ }^{\dagger}$
Andrew M. Petros, ${ }^{\dagger}$ Alexander R. Shoemaker, ${ }^{\dagger}$ Xiaohong Song, ${ }^{\dagger}$ Xilu Wang, ${ }^{\dagger}$ Michael D. Wendt, ${ }^{\dagger}$ Haichao Zhang, ${ }^{\dagger}$
Stephen W. Fesik, ${ }^{\dagger}$ Saul H. Rosenberg, ${ }^{\dagger}$ and Steven W. Elmore*, ${ }^{\dagger}$
Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064, and Idun Pharmaceuticals, 9380 Judicial Drive, San Diego, California 92121

Received October 4, 2006

Abstract

Overexpression of the antiapototic proteins Bcl-2 and Bcl-xL provides a common mechanism through which cancer cells gain a survival advantage and become resistant to conventional chemotherapy. Inhibition of these prosurvival proteins is an attractive strategy for cancer therapy. We recently described the discovery of a selective Bcl-xL antagonist that potentiates the antitumor activity of chemotherapy and radiation. Here we describe the use of structure-guided design to exploit a deep hydrophobic binding pocket on the surface of these proteins to develop the first dual, subnanomolar inhibitors of $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Bcl}-2$. This study culminated in the identification of $\mathbf{2}$, which exhibited EC_{50} values of 8 nM and 30 nM in $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ dependent cells, respectively. Compound 2 demonstrated single agent efficacy against human follicular lymphoma cell lines that overexpress $\mathrm{Bcl}-2$, and efficacy in a murine xenograft model of lymphoma when given both as a single agent and in combination with etoposide.

Introduction

Normal tissue homeostasis requires the proper balance between cellular proliferation and attrition. The genetic instability inherent to cancer gives rise to defects in both cell growth and cell death pathways that tip the scales to allow tumor initiation and progression. Apoptosis, or programmed cell death, is an evolutionarily conserved and highly regulated process that is the primary mechanism for the removal of aged, damaged, and unnecessary cells. ${ }^{1}$ One of the fundamental hallmarks of cancer is the ability to evade or ignore physiologic cues that would initiate this form of cellular suicide in normal cells. ${ }^{2}$ This is often accomplished through dysregulation of apoptotic signaling pathways.

The B-cell lymphoma 2 (Bcl-2) family of proteins is composed of both proapoptotic (prodeath) and antiapoptotic (prosurvival) members that cooperate through a complex series of protein-protein interactions to mediate the intrinsic or mitochondrial apoptotic pathway. ${ }^{3-5}$ The prodeath proteins can be subcategorized into two groups; those that contain three Bcl homology (BH) domains (BH1-BH3) (Bax, Bak) and those that contain a single BH3 domain (BH3-only) (Bad, Bik, Bid, Bim, Hrk, Bmf, Noxa and Puma). These proteins propagate the death signal by inducing permeabilization of the mitochondrial membrane, release of cytochrome C , and the activation of a group of intracellular cysteine proteases called caspases. The resulting proteolytic cascade gives rise to the targeted degrada-

[^0]tion of both cytoplasmic and nuclear structures and the formation of apoptotic bodies that are rapidly engulfed and cleared by phagocytic scavenger cells. ${ }^{6,7}$ Prosurvival Bcl-2 family members contain four BH domains ($\mathrm{BH} 1-\mathrm{BH} 4$) and include $\mathrm{Bcl}-2$, $\mathrm{Bcl}-$ $\mathrm{xL}, \mathrm{Bcl}-\mathrm{w}, \mathrm{Mcl}-1$, and Bcl2-A1. These proteins exert their protective effects by directly binding to and sequestering their prodeath counterparts. Cancer cells frequently overexpress the prosurvival Bcl-2 family members to suppress the apoptotic signal in order to promote survival or confer resistance to chemotherapy. ${ }^{8,9}$ Inhibition of these antiapoptotic Bcl-2 family members should specifically target the abnormal cell death pathway found in these cancer cells and offers an attractive target for therapeutic intervention.

Three-dimensional structural studies of antiapoptotic Bcl-2 family proteins have provided invaluable insights into how these proteins interact with their prodeath counterparts. ${ }^{10-13}$ These globular proteins consist of a bundle of eight to nine α-helices in which two mostly hydrophobic α-helices form a structural backbone that is surrounded by six to seven amphipathic α-helices. An elongated hydrophobic groove thus formed along the protein surface that spans approximately $20 \AA$ serves as the binding site for the amphipathic α-helical BH3 domain of their proapoptotic partners. An improved understanding of these protein-protein interactions ${ }^{14,15}$ has enabled strategies for inhibition and potential therapeutic intervention that include modified peptides, natural products, and small synthetic organic molecules. ${ }^{16,17}$

We have recently described the discovery of a class of potent biarylacylsulfonamide antagonists of the antiapoptotic protein Bcl-xL. ${ }^{18}$ These studies led to the identification of 1a (Figure 2) which bound Bcl-xL with a K_{i} of 0.8 nM . 1a effectively negated the survival advantage provided by $\mathrm{Bcl}-\mathrm{xL}$ overexpression against cytokine withdrawal in FL5.12 cells and enhanced the cytotoxic activity of multiple cytotoxic agents and UV irradiation in human tumor cell lines. ${ }^{19}$ However, 1a showed little or no single agent efficacy across a diverse panel of human tumor cell lines. Because this compound was developed by structure-based design targeting Bcl-xL, it is not surprising that

Figure 1. Generic, cylinder depiction of the three-dimensional structures of $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Bcl}-2$ proteins with the helices labeled. The dotted line is drawn along the axis of the hydrophobic binding groove formed largely by the $\alpha 3, \alpha 4$, and $\alpha 5$ helices.
it exhibited considerably lower affinity for Bcl-2. Given the widespread overexpression of $\mathrm{Bcl}-2$ in human cancers, the identification of the $t(14 ; 18)$ chromosomal translocation involving Bcl-2 overexpression as the initiating genetic lesion in non-Hodgkin's lymphoma and the potential for redundant antiapoptotic function of $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$, we sought to broaden the binding profile of compounds in this series to include high affinity for $\mathrm{Bcl}-2$.

Although the overall sequence identity between $\mathrm{Bcl}-\mathrm{xL}$ and Bcl-2 is only 49%, their three-dimensional architecture is quite similar. ${ }^{20}$ In fact, if one omits the large unstructured loop between $\alpha 1$ and $\alpha 2$, the global root-mean-square deviation (rmsd) of their backbones is only $\sim 1.85 \AA$. The binding groove is composed largely of a cleft between the $\alpha 3$ and $\alpha 4$ helices that has a floor made up of the central $\alpha 5$ and $\alpha 6$ helices (Figure 1). The largest difference between the two proteins in their unbound state is a slightly different helical fold of their $\alpha 3$ helices. Since the $\alpha 3$ helix borders one side of the hydrophobic binding groove, this results in a distinctly wider groove for $\mathrm{Bcl}-2$ compared to Bcl-xL. Within the groove itself, there exist only three differences in primary sequence located at positions 104 (Ala in Bcl-xL, Asp in Bcl-2), 108 (Leu in Bcl-xL, Met in Bcl2), and 122 (Ser in $\mathrm{Bcl}-\mathrm{xL}$, Arg in $\mathrm{Bcl}-2$). Most notable is the potential for the flexible side chain of M108 in the center of the $\alpha 3$ helix of Bcl-2 to allow penetration into a deep hydrophobic pocket within the groove compared to the more rigid L108 found in Bcl-xL. Given this difference along with the inherently wider Bcl-2 groove, we postulated that accessing this deep hydrophobic pocket in the floor of the groove might significantly enhance the $\mathrm{Bcl}-2$ affinity of our inhibitors. Herein we describe the molecular design considerations and structureactivity relationships that began with $\mathbf{1 a}$ and culminated in the discovery of the potent, dual $\mathrm{Bcl}-2 / \mathrm{Bcl}-\mathrm{xL}$ inhibitor 2 (ABT737), for which the biological activity has recently been described ${ }^{21}$ (Figure 2).

Synthesis

The convergent synthesis of the site-1 piperidine-containing acylsulfonamide inhibitors described in this study employed an EDCI coupling of an appropriately substituted benzoic acid and the previously described benzenesulfonamide 4^{18} as the final step (Chart 1). 4-Alkyl-4-methoxypiperidine analogues were synthesized as shown in Scheme 1. Addition of alkyl or benzyl Grignard reagents directly to ethyl 4 -(4-oxopiperidin-1-yl)benzoate ${ }^{22} \mathbf{5}$ yielded the tertiary alcohols $\mathbf{6 a}-\mathbf{n}$ in moderate yield. Methylation of the tertiary alcohols and saponification of the ethyl esters $7 \mathbf{a}-\mathbf{n}$ yielded the necessary benzoic acids that were condensed with $\mathbf{4}$ to yield acylsulfonamides $\mathbf{8 a}-\mathbf{n}$.

4-Benzylidenepiperidine analogues were prepared according to Scheme 2. Wittig olefination of $\mathbf{5}$ allowed the generation of

Figure 2. Structures of and substructure nomenclature for biarylacylsulfonamide Bcl-2 family protein inhibitors.

Chart 1. General Coupling Procedure

a variety of benzylidene analogues that were saponified to provide benzoic acids $9 \mathbf{a}-\mathbf{k}$. Condensation with benzenesulfonamide 4 yielded the desired acylsulfonamides $\mathbf{1 0 a}-\mathbf{k}$.

Synthesis of isoxazolines began with Wittig olefination of $\mathbf{5}$ followed by ester hydrolysis and EDCI coupling of the resulting carboxylic acid with sulfonamide 4 to provide the exomethylene 13. Slow addition of a N-hydroxybenzimidoyl chloride ${ }^{23}$ or phenylacetohydroximoyl chloride ${ }^{24}$ to a warm chloroform solution of $\mathbf{1 3}$ in the presence of triethylamine yielded the cycloaddition adducts $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$, respectively. Treatment of ketone 5 with (\pm)-lactamide in the presence of acid yielded the racemic oxazolidin-4-one $\mathbf{1 5}$ directly. N-Benzylation followed by ester hydrolysis and coupling of the resulting carboxylic acid $\mathbf{4}$ furnished the oxazolidinone derivative $\mathbf{1 8}$ (Scheme 3).

The synthesis of piperazine containing analogues 20-22 and $\mathbf{2 3 a} \mathbf{- h}$ was achieved through functionalization of phenyl piperazine 19b, which was obtained by coupling of 4-(4-(tert-butoxycarbonyl)piperazin-1-yl)benzoic acid ${ }^{18}$ to 4 followed by deprotection of the amine (Scheme 4). Compounds 20 and 21 were easily prepared via reaction of $\mathbf{1 9 b}$ with benzoyl chloride and tosyl chloride, respectively. Substituted phenyl urea 22 was formed by reaction of $\mathbf{1 9 b}$ with phenyl isocyanate. Substituted benzyl piperazines 23a-h were prepared from 19b in a single step by either reductive alkylation with benzaldehydes or alkylation with substituted benzyl bromides. In the case of 23f, 2-cyclohexylaminobenzaldehyde 26 was prepared by microwaveassisted aromatic nucleophilic substitution of 2-fluorobenzonitrile 24 with cyclohexylamine followed by DIBAL-H reduction of the nitrile (Scheme 5).

Alkylation of ethyl 4-piperazinylbenzoate $\mathbf{2 7}^{25}$ with 2-bromomethylbiphenyl or 2-trifluoromethylbenzyl bromide gave 28 and 29, respectively. Reductive alkylation of 27 with 2 -bromobenzylaldehyde provided o-bromo analogue $\mathbf{3 0}$ that served as a useful intermediate for further functionalization. Microwaveassisted Suzuki coupling employing commercially available aryl boronic acids in the presence of dichlorobistriphenylphosphinepalladium yielded substituted 2-phenylbenzyl analogues 31-40 in good yields. Hydrolysis of ethyl esters 28, 29, and 31-40 followed by coupling of the resulting acids to $\mathbf{4}$ yielded $\mathbf{2 3 i}-\mathbf{s}$ and 2 (Scheme 6).

Scheme 1. Synthesis of 4-Alkyl-4-methoxypiperidine Analogues ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{RMgX}, \mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$; (b) $\mathrm{NaH}, \mathrm{MeI}$, THF/HMPA, $50^{\circ} \mathrm{C}$; (c) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{MeOH}, 50^{\circ} \mathrm{C}$; (d) 4, EDCI, $\mathrm{DMAP}^{2}, \mathrm{CH}_{2} \mathrm{Cl} 2_{2}$.
Scheme 2. Synthesis of 4-Benzylidenepiperidine Analogues ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{ArCH}_{2} \mathrm{PPh}_{3} \mathrm{Br}, \mathrm{NaH}, \mathrm{DMSO}, 80^{\circ} \mathrm{C}$; (b) 1 N aq $\mathrm{NaOH} /$ dioxane, $90^{\circ} \mathrm{C}$; (c) 4, EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Scheme 3. Synthesis of Spirocyclic Isoxazoline and Oxazolidin-4-one Analogues ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{PPh}_{3} \mathrm{CH}_{3}{ }^{+} \mathrm{I}^{-}$, BuLi, THF; (b) $\mathrm{LiOH} / \mathrm{THF} / \mathrm{EtOH} /$ water; (c) 4, EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) N -hydroxybenzimidoyl chloride or phenylacetohydroximoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$; (e) (\pm)-lactamide, p-TSA; (f) NaH , benzyl bromide.

Compounds containing the 1,1-dimethyl-2-phenylthioethylamine side chain used in structural studies were prepared by the two-step process outlined in Scheme 7. Nucleophilic aromatic substitution of 4-fluoro-3-nitrobenzenesulfonamide with 2-amino-2,2-dimethylethyl phenyl thioether $\mathbf{4 1}^{26}$ yielded 42 which was subsequently coupled to the indicated benzoic acids to provide 1b, 43a, and 43b.

Results and Discussion

Rationale. The ability to access an additional Bcl-2 hydrophobic binding pocket was confirmed when an NMR-derived structure of the benzothiazole analogue 3 (Figure 3a) bound to $\mathrm{Bcl}-2$ revealed deep penetration of its phenethyl side chain into the Bcl-2 groove ${ }^{21}$ (Figures 3c). Interestingly, the NMR-derived structure of the analogous Bcl-xL complex (Figures 3b) shows

Scheme 4. Synthesis of Various 4-Substituted-N-phenylpiperazine Analogues ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) 4, EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) 4 M HCl , dioxane; (c) $\mathrm{BzCl}, \mathrm{Et}_{3} \mathrm{~N}$, DMA; (d) TosCl, Et ${ }_{3} \mathrm{~N}, \mathrm{DMA}$; (e) $\mathrm{PhNCO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMA}$; (f) $\mathrm{ArCHO}, \mathrm{RBH}_{3} \mathrm{CN}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 5. Synthesis of 2-(Cyclohexylamino)benzaldehyde, $\mathbf{2 6}^{a}$

${ }^{a}$ Reagents and conditions: (a) c-hexylamine, DMSO, microwave, 180 ${ }^{\circ} \mathrm{C}$, 15 min ; (b) DIBAL, toluene.

3 to adopt an extended conformation lying along the hydrophobic surface of the protein. This suggested that substitution of our acylsulfonamide inhibitors at the site- 1 terminus had the potential to enhance binding affinity to $\mathrm{Bcl}-2$ while not adversely affecting affinity to $\mathrm{Bcl}-\mathrm{xL}$.

Although this served as a proof of principle, benzothiazole analogues akin to $\mathbf{3}$ lacked sufficient biological activity to pursue as a viable lead series. To explore the possibility of utilizing the structural scaffold found in 1a, the most advanced lead identified in our previous study, an NMR-derived structure of 1b bound to Bcl-2 was determined. The average-minimized structure is shown in Figure 3d. Compound 1b (Figure 2) is a close structural analogue of $\mathbf{1 a}$ in which the basic side chain has been removed and the 1,1-dimethyl-2-phenylthioethanamine moiety was incorporated at site-3. These modifications typically rendered this class of compounds more amenable to structural study. As shown in Figure 3d, the positioning of the terminal piperidine ring of $\mathbf{1 b}$ within the groove is quite similar to that of the benzothiazole ring of $\mathbf{3}$. We surmised that the 4 -position of the piperidine ring of $\mathbf{1 a}$ might offer a surrogate platform from which to further probe Bcl-2 binding with minimal change to the overall structure of $\mathbf{1 a}$.

Structure-Activity Relationships. The binding affinities (K_{i}) of compounds were determined using fluorescence polarization assays (FPA) that measure their ability to competitively displace a Bad-derived peptide from $\mathrm{Bcl}-\mathrm{xL}$, and a Bax-derived peptide from Bcl-2 as described in the Experimental Section. Our previous studies identified the tendency for biarylacylsulfonamide inhibitors to bind serum albumin. Therefore, to assess the potential of serum components to attenuate compound
activity, binding affinities for $\mathrm{Bcl}-\mathrm{xL}$ were also obtained in the presence of 10% human serum. Compound efficacy in a cellular context was evaluated by testing their ability to reverse the protection from cytokine withdrawal afforded by overexpression of $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Bcl}-2$ in the IL-3 dependent murine pro-B cell line FL5.12. To examine the serum effect in this context, cellular assays were conducted both in the presence and absence of 3% fetal bovine serum for the most potent compounds.

We initially sought to survey a variety of piperidine and piperazine structural motifs bearing simple hydrophobic substituents at their 4-positions in order to identify those with appropriate trajectory and/or rigidity to enhance $\mathrm{Bcl}-2$ affinity while maintaining Bcl-xL affinity. For the most direct compound comparison, all analogues prepared contained the site- 2 - site- 3 (R)-4-(4-(dimethylamino)-1-(phenylthio)butan-2-ylamino)-3nitrobenzenesulfonamide found in 1a. Table 1 summarizes the activities of four piperidine and four piperazine scaffolds that were initially sampled.
4-Substituted piperidines provided an attractive template because their C-2 symmetry allows the potential for two different substitution vectors without introduction of an additional chiral center. The solvent-exposed nature of the binding groove should allow one substituent access to the protein surface while the other projects toward solvent. Of the piperidines described in Table 1, 4-benzyl-4-methoxy analogue $\mathbf{8 e}$ is the most structurally analogous to 1a. Replacement of the terminal methyl groups of $\mathbf{1 a}$ with benzyl and methoxy groups to give $\mathbf{8 e}$ resulted in an increase in both $\mathrm{Bcl}-2$ binding affinity and efficacy in $\mathrm{Bcl}-2$ overexpressing FL5.12 cells. Bcl-xL activity of $\mathbf{8 e}$ was similar to that of $\mathbf{1 a}$.

To confirm our working hypothesis of the binding orientation of these compounds, NMR-derived structures for the site-3 gemdimethyl analogue 43a bound to both $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ were determined. The average-minimized structures are depicted in Figures 4 a and 4 b . When bound to $\mathrm{Bcl}-2$, the piperidine ring of 43a adopts a chair conformation similar to that observed for $\mathbf{1 b}$ when bound to $\mathrm{Bcl}-2$. It projects a pseudoequatorial benzyl group that makes extensive contact with hydrophobic residues deep in the binding groove (Figure 4a). This binding orientation

Scheme 6. Synthesis of Substituted 2-Aryl-benzylpiperazine Analogues ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{ArCH}_{2} \mathrm{Br}, \mathrm{Et}_{3} \mathrm{~N}$, dioxane; (b) $\mathrm{ArCHO}, \mathrm{NaBH}(\mathrm{OAc})_{3}, 1,2$-dichloroethane; (c) $\mathrm{ArB}(\mathrm{OH})_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{microwave}$, $150^{\circ} \mathrm{C}$; (d) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{THF}$; (e) 4, EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme 7. Synthesis of Compounds Containing the 1,1-Dimethyl-2-phenylthio Ethylamine Site-3 Used in Structural Studies ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) 4-fluoro-3-nitrobenzenesulfonamide, DMSO, DIEA, rt; (b) EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
is similar to that observed for benzothiazole $\mathbf{3}$ when bound to $\mathrm{Bcl}-2$. When bound to $\mathrm{Bcl}-\mathrm{xL}$, the piperidine ring of 43a exists in a chair conformation with a pseudoaxial benzyl group (Figure 4b) that permeates the hydrophobic surface to a much greater extent than the phenethyl group of benzothiazole 3. Although not as dramatic as for Bcl-2, this suggests at least some capacity for the $\mathrm{Bcl}-\mathrm{xL}$ groove to accommodate deep-binding hydrophobic substitution. The methoxy group of 43a is solventexposed when bound to both proteins and presumably contributes little to binding energy.

In this initial study, we also explored the effect of scaffold rigidification by introduction of an sp^{2} benzylidene linkage or by incorporation of spirocyclic isoxazoline or oxazolidin-4-one rings. Benzylidene 10a displayed a 20 -fold increase in $\mathrm{Bcl}-2$ binding affinity relative to $\mathbf{1 a}$ while maintaining subnanomolar
affinity for Bcl-xL. This also translated into improved cellular efficacy. While the substituted spirocyclic analogues 14a, 14b, and $\mathbf{1 8}$ either maintained or increased $\mathrm{Bcl}-2$ binding affinity, all but 14b lost measurable cellular activity (Table 1).

Replacement of the piperidine ring of $\mathbf{1 a}$ with piperazine was examined as a simple isosteric replacement that offered a more synthetically tractable core for SAR development. Our initial goal was to examine the effect of aryl substitution tethered to the piperazine nitrogen via a variety of linkers. Benzyl (23a), benzoyl (20), and tosyl (21) substitution yielded compounds with Bcl-2 affinities similar to or better than that of 1a. N-Phenylurea 22 was significantly less active ($K_{\mathrm{i}}=300 \mathrm{nM}$). However, when tested in FL5.12 cells only the benzyl derivative 23a maintained cellular efficacy, while the three analogues with heteroatom-containing linkers exhibited little to no cellular
a

Figure 3. (a) Structure of benzothiazole inhibitor 3. (b) NMR-derived structure of $\mathbf{3}$ bound to Bcl-xL. Ala104, Leu108, and Ser122 are highlighted in yellow (PDB code 2O1Y). (c) NMR-derived structure of 3 bound to Bcl-2. Asp104, Met108, and Arg 122 are highlighted in yellow (PDB code 2O21). (d) NMR-derived structure of $\mathbf{1 b}$ bound to $\mathrm{Bcl}-2$ (PDB code 2O22). For all structures, protein backbone and residue sidechains are depicted in green with the $\alpha 3$ and $\alpha 4$ helices emphasized.

Figure 4. (a) NMR-derived structure of 43a bound to $\mathrm{Bcl}-2$ (PDB code 2 O 2 F). (b) NMR-derived structure of $\mathbf{4 3 a}$ bound to $\mathrm{Bcl}-\mathrm{xL}$ (PDB code $2 \mathrm{O} 2 \mathrm{M})$. Protein backbone and residue sidechains are depicted in green with the $\alpha 3$ and $\alpha 4$ helices emphasized. The solvent exposed surface of residue sidechains making up the binding groove surrounding the ligand are highlighted in gray.
activity. On the basis of these data, we identified 4-methoxy-4-benzylpiperidines, 4-benzylidenepiperidines, and benzylpiperazines as the most promising series to explore in more depth.

Given the close structural similarity between the three chemical series, we focused first on development of the

4-methoxy-4-alkylpiperidine SAR with the hope of extending our findings to the other scaffolds. A detailed SAR of the 4-disubstituted piperidines is outlined in Table 2. A progressive increase in steric bulk of the terminal substituent ($\mathbf{1 a}, \mathbf{8 a}-\mathbf{e}$) resulted in a corresponding increase in Bcl-2 affinity. A survey

Table 1. SAR of Various 4-Substituted Piperidine and Piperazine Structural Scaffolds

${ }^{a}$ Values are mean \pm standard deviation for two experiments run in duplicate. Asterisk indicates mean \pm standard error for three or more experiments run in duplicate. Values without error are single experiments run in duplicate.
of chlorophenyl positional isomers ($\mathbf{8 f} \mathbf{- \mathbf { h }) \text { revealed a preference }}$ for ortho-substitution ($\mathbf{8 f}$) that gave subnanomolar affinities for both Bcl-2 and Bcl-xL and significantly enhanced affinity in the presence of human serum. The very potent and balanced binding affinity of $\mathbf{8 f}$ also translated into balanced cellular potency with EC_{50} values of $0.23 \mu \mathrm{M}$ and $0.18 \mu \mathrm{M}$ in $\mathrm{Bcl}-\mathrm{xL}$ and Bcl-2 transfected cell lines, respectively. Evaluation of a series of ortho-substituted and ring fused analogues identified a phenyl group as the optimum ortho-substitutent. 4-(Biphenyl2 -ylmethyl)-4-methoxypiperidine analog, $\mathbf{8 m}$, maintains high target affinities that is below the detection limit of the FPA both in the absence and presence of added serum. In addition, $8 \mathbf{m}$ possesses cellular EC_{50} values $(0.035 \mu \mathrm{M}$ and $0.020 \mu \mathrm{M}$ in Bcl-xL and Bcl-2 transfected cell lines, respectively) that are approximately 10 -fold and 100 -fold more potent than the parent phenylpiperidine, 1a.

Incorporation of a benzylidene at the piperidine 4-position imparts rigidity to the system, and we speculated that 1,3-allylic strain inherent to this structure would force the aromatic ring out of plane and adopt a similar binding orientation to that of the 4-benzyl-4-methoxypiperidines. Table 3 shows the SAR of subsitituted 4-benzylidenepiperidine analogues. Again, there is a significant preference for ortho- over para-substitution (10c vs 10d, 10e vs $\mathbf{1 0 f}$) in cellular assays. Interestingly, neither 2-pyridyl (10i) nor 3-pyridyl (10j) substitution was well tolerated. As in the 4-benzyl-4-methoxy series, 2-aryl substitution was optimal to give balanced and potent binding affinity that was superior in the presence of added human serum. Although 10k possesses balanced cellular activity with EC_{50} values of $0.18 \mu \mathrm{M}$ and $0.16 \mu \mathrm{M}$ for $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$, respectively, this is 5 -fold to 10 -fold less potent than that of the corresponding 4-methoxy-4-benzyl analogue $\mathbf{8 m}$.

The ability of an N-phenylpiperazine group to adopt a similar conformation to N-phenylpiperidine led us to employ a scaffoldhopping strategy. This allowed us to focus on the SAR of ortho-
substituted N-benzylpiperazine derivatives. Table 4 summarizes the activity of a variety of 1-(2-substituted benzyl)-4-phenylpiperazine derivatives. With the exception of the methylsulfone 23e, all 2-substituted benzyl analogues exhibited significantly improved $\mathrm{Bcl}-2$ affinity and enhanced cellular efficacy in $\mathrm{Bcl}-2$ overexpressing cells compared to the unsubstituted parent compound, 23a. Both nonpolar (alkyl, aryl) and polar (cyclohexylamine, morpholine, pyridyl) substituents were well tolerated with $\mathbf{2 3 d}, \mathbf{2 3 g}$ and $\mathbf{2 3 i}$ showing affinities below limits of detection in all binding assays. The biphenyl-2yl-methylpiperazine analogue 23i, however, exhibited significantly enhanced cellular potency relative to other analogues in Table 4 that is 50 -fold ($\mathrm{Bcl}-\mathrm{xL}$) to 100 -fold (Bcl-2) greater than that of the N-benzyl analogue 23a.

Further exploration of the SAR associated with terminal biphenyl ring substitution (Table 5) reveals that nonpolar substitution is well tolerated in the para-position. With the exception of the methylsulfone 23s, all the para-substituted analogues exhibited cellular activities in the absence of serum similar to that of the unsubstituted biphenyl 23i. However, when tested in the presence of added serum the p-chloro analogue $\mathbf{2}$ clearly shows superior cellular efficacy with EC_{50} values of 0.05 $\mu \mathrm{M}$ and $0.22 \mu \mathrm{M}$ for $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ overexpressing cells, respectively, corresponding to a 5 -fold to 25 -fold greater potency than the unsubstituted biphenyl 23i. This improved cellular activity may well be the result of decreased interaction with serum components as opposed to increased affinity of $\mathbf{2}$ for $\mathrm{Bcl}-2$ family proteins. Nonetheless, compound 2 exhibits a $>20-$ fold (Bcl-xL) and >250-fold (Bcl-2) improvement in cellular efficacy compared to our starting compound $\mathbf{1 a}$.

To better understand the origin of the improved activities imparted by biphenyl substitution, we determined the NMRderived structure of site-3 gem-dimethyl analogue 43b bound to $\mathrm{Bcl}-\mathrm{xL}$. The average minimized structure is shown in Figure 5b where 43b (magenta) is bound to the hydrophobic groove of Bcl-xL depicted as an electrostatic potential surface. The piperazine ring adopts a chairlike conformation with its hydrophobic substituent in a pseudoaxial orientation similar to that of the piperidine of 43a bound to Bcl-xL. However, the 2-substituted biphenyl group forces the biphenyl A-ring (Figure 5a) to stack under the piperazine making extensive hydrophobic contacts deep within the binding groove. This allows the biphenyl B-ring to more effectively occupy the pocket that had been only partially occupied by the benzyl group of 43a. Although we were unable to generate sufficient data to determine the structure of the analogous Bcl-2 complex, we believe a similar binding arrangement is in operation when 43b binds $\mathrm{Bcl}-2$.

One of the striking features of this ligand-bound complex is the extent to which 43b binds deeply in the groove and is enveloped by the protein. When compared to the unbound protein structure, ${ }^{10}$ this represents a sizable conformational change of the protein upon ligand binding. In fact, the BH3 binding groove of $\mathrm{Bcl}-\mathrm{xL}$ is not readily apparent on its surface when in an unbound state. In addition, the bound protein conformation of $\mathrm{Bcl}-\mathrm{xL}$ depicted in Figure 5 is quite different than that when bound to a peptide derived from an endogenous BH3 only binding partner, Bad. In this instance, the protein binding groove is held in a much more open conformation while the peptide spans nearly the entire surface of the protein. ${ }^{15}$ These observations dramatically highlight the importance of the protein dynamics in these binding interactions. Moreover, they illustrate the need for consideration of protein dynamics in inhibitor design as well as potential pitfalls of design against a static target.

Table 2. SAR of 4-Alkyl-4-methoxypiperidine Derivatives

			FPA		FL5.12 cells	
				$\begin{gathered} 10 \% \mathrm{HS} \\ \mathbf{I C}_{50},(\mathrm{nM}) \\ \hline \end{gathered}$	$\mathbf{E C}_{50},[\mathbf{u M}]^{a}$	
	R	Bcl-2	Bcl-xL	Bcl-xL	Bcl-2	Bcl-xL
1a	NA	67 ± 6	0.8 ± 0.2	360 ± 67	2.2 ± 0.15	0.47 ± 0.05
8 a	1	$56 \pm 4 *$	$6.1 \pm 1.2 *$	360	0.7	$0.58 \pm 0.18 *$
8b	$1+$	16	4.6	440	1.0	0.75 ± 0.15
8c	\cdots	$20 \pm 2^{*}$	1.3	312	3.0	8.0
8d		6.6	0.8 ± 0.2	300	0.2 ± 0	$0.32 \pm 0.07^{*}$
8e	$1>$	8.1	1.8 ± 0.3	150	$0.93 \pm 0.37^{*}$	$0.68 \pm 0.10^{*}$
8 f	Cl	< 1	< 0.5	62	$0.18 \pm 0.0{ }^{*}$	$0.23 \pm 0.09^{*}$
8g		1.8 ± 0.4	<0.5	170	0.3 ± 0.0	0.25 ± 0.05
8h		2.7 ± 0.2	0.9	200	0.5 ± 0.1	0.4 ± 0.0
$8 \mathbf{1}$	$\xrightarrow[F]{1>}$	$3.1 \pm 0.8^{*}$	$0.9 \pm 0.1 *$	79	0.10 ± 0.0	$0.18 \pm 0.04 *$
8j		$1.4 \pm 0.3 *$	<0.5	71	0.2	0.15 ± 0.05
8k		1.6 ± 0.6	1.1	75	0.25 ± 0.05	0.15 ± 0.05
81	Cr	1.5 ± 0.5	<0.5	<60	0.2 ± 0.0	0.1 ± 0.0
8m	Ph	<1	<0.5	< 60	0.02 ± 0.00	0.035 ± 0.005
8n		<1	0.9	160	1.1 ± 0.2	0.6 ± 0.1

${ }^{a}$ Values are mean \pm standard deviation for two experiments run in duplicate. Asterisk indicates mean \pm standard error for three or more experiments run in duplicate. Values without error are single experiments run in duplicate.

Activity in Human Tumor Cell Lines. The goal of this study was specifically to enhance the activity of our biarylacylsulfonamide inhibitors against Bcl-2. Indeed, the best compound identified (2) shows several orders of magnitude greater efficacy than our starting prototype compound (1a) against a murine pro-B cell line engineered to overexpress Bcl-2. To better examine the potential relevance to human disease, we examined the activity of compounds against human tumor cell lines derived from patients with follicular lymphoma. Bcl-2 is known to be highly overexpressed in follicular lymphoma due to the presence of a $t(14 ; 18)$ chromosomal translocation that is thought to be the initiating genetic lesion in these tumors. ${ }^{27}$ This translocation places the bcl-2 gene of the 18q21 chromosomal region under the transcriptional control of the immunoglobulin heavy chain gene (IgH) region. Linkage to the expression of such a ubiquitously expressed protein induces a massive overexpression of the $\mathrm{Bcl}-2$ protein. We chose to examine the activity of $\mathbf{2}$ compared to $\mathbf{1 a}$ in three human tumor cell lines, DoHH2, SUDHL-4, and RS11380 that are known to harbor the $\mathrm{t}(14 ; 18)$ translocation, express high levels of $\mathrm{Bcl}-2$ and low levels of Bcl-xL by western blot analysis (data not shown). As shown in Table 6, in 10% human serum 1a shows no cellular
activity up to $30 \mu \mathrm{M}$ whereas 2 possess EC_{50} values $<1 \mu \mathrm{M}$ against all three cell lines. When examined under less stringent conditions employing 3\% fetal bovine serum (FBS), 1a does exhibit measurable efficacy with EC_{50} values in the low micromolar range. Under these conditions, 2 is significantly more efficacious exhibiting low nanomolar EC_{50} values against all cell lines.

In Vivo Evaluation. We next evaluated 2 for efficacy in a murine established tumor xenograft model. As the most rigorous test of the compound, we chose to evaluate SUDHL-4, the least sensitive follicular lymphoma cell line described above. For comparison we used the topoisomerase II inhibitor etoposide. This agent has demonstrated clinical efficacy in non-Hodgkin's lymphoma as both a single agent and as part of combination regimens. ${ }^{28-30}$ A quantity of 3×10^{6} SUDHL-4 cells was inoculated subcutaneously in the flank of male scid mice, and the tumors were allowed to grow to an average size of $225 \mathrm{~mm}^{3}$ prior to initiation of therapy. Twice daily treatment with $50 \mathrm{mg} /$ kg of $\mathbf{2}$ for 21 consecutive days was well tolerated and achieved $60-65 \%$ tumor growth inhibition during therapy prior to tumor rebound (Figure 6). This effect is similar to that observed for the maximum tolerated dose (MTD) and schedule of etoposide.

Table 3. SAR of 4-Piperidinebenzylidene Derivatives

${ }^{a}$ Values are mean \pm standard deviation for two experiments run in duplicate. Asterisk indicates mean \pm standard error for three or more experiments run in duplicate. Values without error are single experiments run in duplicate.

Figure 5. (a) Chemical structure of 43b showing biphenyl nomenclature. (b) NMR-derived structure of 43b bound to Bcl-xL (PDB code 2 O 2 N). The solvent accessible surface of the protein is shown with coloration according to electrostatic potential.

Combination of etoposide and $\mathbf{2}$ produced additive efficacy with up to 90% tumor growth inhibition during therapy and increased tumor growth delay compared to either agent alone.

Conclusions

We describe here the use of structure-guided design to develop the first potent, dual inhibitors of Bcl-xL and Bcl-2 with subnanomolar target affinities. Three distinct structural
series were identified that utilized 4 -substituted N-phenylpiperidine or N-phenylpiperazine templates to access a previously under utilized hydrophobic binding pocket deep in the $\mathrm{Bcl}-2$ binding groove. This study culminated in the identification of 2 , which exhibited >250-fold and >20-fold greater efficacy in cells reliant on $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$, respectively, for survival compared to previously disclosed biarylacylsulfonamide inhibitors. We show that this improved activity also translates to enhanced efficacy against human follicular lymphoma cell lines that massively upregulate $\mathrm{Bcl}-2$, and to efficacy in a murine xenograft model of lymphoma when given as both a single agent and in combination with etoposide. We have also previously reported the activity of $\mathbf{2}$ in primary patient-derived samples of follicular lymphoma and chronic lymphocytic leukemia (CLL), ${ }^{21}$ both of which are characterized by high $\mathrm{Bcl}-2$ expression. Although 2 is a balanced inhibitor of both $\mathrm{Bcl}-2$ and $\mathrm{Bcl}-\mathrm{xL}$ compared to the relatively selective $\mathrm{Bcl}-\mathrm{xL}$ inhibitor 1a, as outlined above $\mathbf{2}$ is also significantly more potent against each. Therefore, it is not known whether the increased efficacy of 2 compared to 1a is due to its improved binding profile, or simply improved potency. True delineation of the contribution to efficacy by inhibition of each of these targets will ultimately require the development of potent and selective inhibitors of each antiapoptotic Bcl-2 family protein.

While our working hypothesis for accessing a deep hydrophobic binding pocket in the Bcl-2 groove was confirmed

Table 4. SAR of 2-Substituted N-Benylpiperazine Derivatives

| |
| :--- | :--- | :--- | :--- | :--- |

${ }^{a}$ Values are mean \pm standard deviation for two experiments run in duplicate. Asterisk indicates mean \pm standard error for three or more experiments run in duplicate. Values without error are single experiments run in duplicate.

Table 5. SAR of 2-Aryl-substituted N-Benylpiperazine Derivatives

${ }^{a}$ Values are mean \pm standard deviation for two experiments run in duplicate. Asterisk indicates mean \pm standard error for three or more experiments run in duplicate. Values without error are single experiments run in duplicate. ${ }^{b} \mathrm{IC}_{50}$ value.

Table 6. Efficacy of $\mathbf{1 a}$ and $\mathbf{2}$ in Follicular Lymphoma Cell Lines That Highly Overexpress Bcl-2

		$\mathrm{EC}_{50},[\mu \mathrm{M}]^{a}$	
cell lines	conditions	$\mathbf{1 a}$	$\mathbf{2}$
DoHH2	$3 \% \mathrm{FBS}^{b}$	7.25 ± 0.18	0.0083 ± 0.0003
	$10 \% \mathrm{HS}^{c}$	>30	0.13 ± 0.01
RS11380	$3 \% \mathrm{FBS}$	$10.85 \pm 1.55^{*}$	0.014 ± 0.004
	$10 \% \mathrm{HS}$	>30	0.15 ± 0.003
SUDHL-4	$3 \% \mathrm{FBS}$	$5.25 \pm 1.94^{*}$	0.22 ± 0.09
	$10 \% \mathrm{HS}$	>30	0.85 ± 0.14

${ }^{a}$ Mean values \pm sem for three or more experiments run in duplicate; *mean values \pm standard deviation for two experiments run in duplicate. ${ }^{b}$ FBS $=$ fetal bovine serum. ${ }^{c} \mathrm{HS}=$ human serum.

Figure 6. Effect of $\mathbf{2}$, etoposide, or the combination of $\mathbf{2}$ and etoposide in SUDHL-4 xenograft models of lymphoma. Compound 2 (■)was administered ip twice daily at $50 \mathrm{mg} / \mathrm{kg}$ on days $15-36$ (black bar). Etoposide ($\mathbf{\Delta}$) was administered at $20 \mathrm{mg} / \mathrm{kg}$ ip on days 15,19 , and 23 (asterisks). (\square) The combination of 2 and etoposide. (©) Represents mice treated with combination vehicles. Compound 2 and etoposide monotherapies showed significant inhibition of tumor growth relative to vehicle controls from day 19 onward ($P<0.02$, Wilcoxon Rank Sum test). The combination therapy showed significant tumor growth inhibition relative to monotherapy treatment from day 27 onward (P < 0.01) .
throughout this study, we were surprised to discover that a similar binding mode was in operation for analogues bound to $\mathrm{Bcl}-\mathrm{xL}$. We have observed that the conformation of the $\mathrm{Bcl}-\mathrm{xL}$ protein is quite different in its bound and unbound state. Moreover, the conformation of $\mathrm{Bcl}-\mathrm{xL}$ bound to an endogenous BH3 peptide is distinctly different than its conformation when bound to 43b, yet both ligands are functionally similar. It is reasonable to speculate that future, structurally novel inhibitors of $\mathrm{Bcl}-2$ family proteins will utilize previously unobserved protein conformations. Whether this is due to an 'induced fit' ${ }^{31}$ or 'conformational ensemble'32 binding phenomena, this study provides another striking example of the importance of protein conformational flexibility in ligand binding. ${ }^{33}$ However, traditional molecular modeling, virtual screening, and 'rational' drug design approaches typically treat proteins as static models, utilizing structures of either native unbound protein or high affinity ligand/protein complexes. The future success in targeting such conformationally mobile protein targets should be significantly enhanced by the development of computational approaches that take into account the protein's conformational flexibility and allow iterative design against a dynamic target.

Experimental Section

General Methods. All reactions were carried out under inert atmosphere $\left(\mathrm{N}_{2}\right)$ and at room temperature unless otherwise noted. Solvents and reagents were obtained commercially and were used without further purification. All reported yields are of isolated products and are not optimized. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Varian UNITY or Inova (500 MHz), Varian UNITY (400

MHz), or Varian UNITY plus or Mercury (300 MHz) instrument. Chemical shifts are reported as δ values (ppm) downfield relative to TMS as an internal standard, with multiplicities reported in the usual manner. Mass spectra determinations were performed by the Analytical Research Department, Abbott Laboratories; DCI indicates chemical ionization in the presence of ammonia, ESI indicates electron spray ionization, and APCI indicates atmospheric pressure chemical ionization with ammonia. Elemental analyses were performed by Quantitative Technologies, Inc., Whitehouse, NJ. Column chromatography was carried out in flash mode on silica gel (Merck Kieselgel 60, 230-400 mesh). Unless otherwise noted, preparative HPLC samples were purified on a Zorbax Stable Bond C18 column ($21.4 \times 250 \mathrm{~mm}, 7 \mu \mathrm{~m}$ particle size) using a gradient of $20-100 \% \mathrm{CH}_{3} \mathrm{CN} /$ water $/ 0.1 \%$ TFA over 45 min at a flow rate of $15 \mathrm{~mL} / \mathrm{min}$. HPLC purifications were performed in highthroughput format and the isolated products concentrated in parallel under unoptimized conditions using a Savant Speed Vac concentrator to provide the final products as hydrated trifluoroacetic acid salts.

Protein Preparation. A previously described loop-deleted version of $\mathrm{Bcl}-\mathrm{xL}$ which lacked the putative transmembrane helix was employed for NMR studies and biological assays. The Bcl-2 protein used was a chimera based on isoform 2 (A96T and G110R) in which residues 35-91 were replaced with residues 35-50 from Bcl-xL, and the C-terminal end (residues 208-219) was excised. For both $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Bcl}-2$, uniformly ${ }^{15} \mathrm{~N}$-labeled and ${ }^{15} \mathrm{~N}$-, ${ }^{13} \mathrm{C}$ labeled protein was expressed in E. coli containing the appropriate plasmid, on minimal media containing ${ }^{15} \mathrm{~N}$-labeled ammonium chloride as the sole nitrogen source with or without ${ }^{13} \mathrm{C}$-labeled glucose as the sole carbon source. Proteins were purified by affinity chromatography on a Nickel-ProBond column (Invitrogen), concentrated, and exchanged into 40 mM disodium phosphate buffer, pH 7.0 , containing either 10% or $100 \% \mathrm{D}_{2} \mathrm{O}$ plus 5 mM deuterated dithiothreitol. Protein samples for NMR were $0.5-1.0 \mathrm{mM}$ in microcells. Ligands were added to the protein from concentrated $(100 \mathrm{mM})$ stock solutions prepared in DMSO- d_{6}.

NMR-Based Structural Studies. NMR spectra for structural studies were recorded on Bruker DRX600 and DRX800 spectrometers at 303 K for $\mathrm{Bcl}-\mathrm{xL}$ and 298 K for $\mathrm{Bcl}-2$. Protein solutions were prepared at pH 7.0 in $10 \% \mathrm{D}_{2} \mathrm{O}$. Ligands were added as concentrated stock solutions in deuterated DMSO to achieve a one to one ratio of ligand to protein. Although these ligands display poor aqueous solubility, they were highly soluble in these studies in the presence of protein. Resonance assignments for ligand-bound $\mathrm{Bcl}-\mathrm{xL}$ and $\mathrm{Bcl}-2$ were extrapolated from those of the respective apo proteins by comparing two-dimensional ${ }^{13} \mathrm{C}$ - and ${ }^{15} \mathrm{~N}$-HSQC spectra and three-dimensional ${ }^{13} \mathrm{C}$-edited and ${ }^{15} \mathrm{~N}$-edited NOESY spectra of the liganded to the unliganded protein. An example of the HSQC spectra for $\mathrm{Bcl}-\mathrm{xL}$ in the presence and absence of compound $\mathbf{2}$ is provided in Figure S1. Protein-ligand NOEs were extracted from three-dimensional ${ }^{13} \mathrm{C}$-edited, ${ }^{12} \mathrm{C}$-filtered NOESY spectra recorded with mixing times ranging from 150 to 250 ms .

Structure Calculations. For both Bcl-xL and Bcl-2, the program CNX was used for all structure calculations. ${ }^{34}$ Ligands were first positioned randomly near the binding groove of the protein, and the observed intermolecular NOEs were used to dock the ligands into the groove. This docking was followed by energy minimization and a standard simulated annealing protocol. ${ }^{35}$ During the simulated annealing, coordinates of the protein were held fixed with the exception of those residues that line the binding groove (residues 96-112, 127-142, 191-194). This protocol was based on our structural studies of Bak peptide binding to $\mathrm{Bcl}-\mathrm{xL}$ for which we observed structural rearrangements only for residues lining the hydrophobic groove upon peptide binding. ${ }^{14}$ For compound $\mathbf{3}$ bound to $\mathrm{Bcl}-\mathrm{xL}$, a total of 66 intermolecular NOEs were used to dock the ligand to the protein, whereas for $\mathrm{Bcl}-2$, a total of 86 NOEs were employed. Docking of compound 1b to Bcl-2 involved 72 intermolecular NOEs. For compound 43a, 94 NOEs were used in docking to Bcl-xL and 68 in docking to Bcl-2. Finally, for compound 43b bound to Bcl-xL, a total of 61 intermolecular NOEs were employed.

Fluorescence Polarization Assay. K_{i} and IC_{50} values were determined using a competitive fluorescence polarization assay. Compounds were serially diluted and added to each well of a 96well microtiter plate. To determine $\mathrm{Bcl}-\mathrm{xL} K_{\mathrm{i}}$ values, a mixture totaling $125 \mu \mathrm{~L}$ per well of assay buffer (20 mM phosphate buffer, pH 7.4), 1 mM EDTA, $50 \mathrm{mM} \mathrm{NaCl}, 0.05 \%$ PF-68), 6 nM Bcl-xL protein ${ }^{14} 1 \mathrm{nM}$ fluorescein-labeled BAD peptide (NLWAAQRYGRELRRMSDK(FITC)FVD, prepared in-house), and the DMSO solution of compound was shaken for 2 min and then placed in a LJL Analyst (LJL Bio Systems, CA). A negative control (DMSO, 1 nM BAD peptide, assay buffer) and a positive control (DMSO, 1 nM BAD peptide, $6 \mathrm{nM} \mathrm{Bcl-xL}$, assay buffer) were used to determine the range of the assay. The effects of 10% human serum were detected as described above using 30 nM f-Bad peptide and 60 nM Bcl-xL. To determine $\mathrm{Bcl}-2 K_{\mathrm{i}}$ values, a mixture totaling $125 \mu \mathrm{~L}$ per well of assay buffer (20 mM phosphate buffer, pH 7.4), 1 mM EDTA, $50 \mathrm{mM} \mathrm{NaCl}, 0.05 \%$ PF-68), 10 nM Bcl-2 protein, ${ }^{11}$ 1 nM fluorescein-labeled BAX peptide (FITC-QDASTKKLSECLKRIGDELDS, prepared in-house), and the DMSO solution of the test compound was shaken for 2 min and placed in the LJL Analyst. Polarization was measured at $25^{\circ} \mathrm{C}$ using a continuous fluorescein lamp (excitation 485 nm ; emission 530 nm). Percentage of inhibition was determined by (1-($(\mathrm{mP}$ value of well-negative control)/range) $) \times 100 \%$. K_{i}, and IC_{50} values were calculated using Microsoft Excel.

FL5.12 Cellular Assay. Mouse FL5.12 cells transfected with Bcl-xL were cultured under standard conditions in RPMI with 2 mM glutamine, $1 \% 100 \mathrm{mM}$ sodium pyruvate, $2 \% 1 \mathrm{M}$ HEPES, 4 $\mu \mathrm{L} / \mathrm{L}$ of β-mercaptoethanol, 1% penicillin-streptomycin, $10 \% \mathrm{FBS}$, and $10 \% \mathrm{WEHI}-3 \mathrm{~B}$ conditioned media (for IL-3). For assaying the compound activity, the cells were exchanged into an IL-3-depleted deprivation media, which was identical to the growth media except for the absence of FBS and WEHI-3B conditional media, for 2 days. Then the cells were exchanged to either gelatin assay media (RPMI with 2 mM glutamine, $2 \% 1 \mathrm{M}$ HEPES, $3.4 \mathrm{mg} / \mathrm{mL}$ bovine gelatin (Sigma)) or 3% FBS assay media (RPMI with 2 mM glutamine, $1 \% 100 \mathrm{mM}$ sodium pyruvate, $2 \% 1 \mathrm{M} \mathrm{HEPES}, 4 \mu \mathrm{~L} / \mathrm{L}$ of β-mercaptoethanol, 1% penicillin-streptomycin, 3\% FBS). Compounds in series dilutions were added, and the cells were cultured for 24 h . Cell viability was assayed using the colorimetric 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium MTS assay or the CellTiter-Glo assay (Promega Corp., Madison, WI) according to the manufacturer instructions. Individual determinations were the result of duplicate values.

Human Tumor Cell Line Viability Assay. DoHH-2 human B-cell lymphoma cells was obtained from the German Collection of Microorganisms and Cell Cultures (Braunschweig, Germany). SUDHL-4 human tumor cell line was obtained from American Type Culture Collection (Manassas, VA). RS11380 human follicular lymphoma cell line was a generous gift from Dr. John Reed (the Burnham Institute, San Diego, CA). Cells were cultured in RPMI 1640 medium supplemented with 1% penicillin-streptomycin and 10% fetal bovine serum. To determine the effect of Bcl-2 inhibitors, cells were plated in 96 well plates at 50000 cells per well and treated with compounds in RPMI 1640 medium supplemented with either 3% fetal bovine serum or 10% human serum for 48 h . Cell viability was analyzed using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium MTS assay (Promega Corp., Madison, WI) according to the manufactures instructions.

In Vivo Xenograft Modeling. All animal studies were conducted in accordance with the guidelines established by the internal Institutional Animal Care and Use Committee. C.B.-17 scid (scid) mice (Charles River Laboratories, Wilmington, MA) were implanted with 3×10^{6} SUDHL-4 cells subcutaneously into the right flank. Inoculation volume was 0.2 mL consisting of 50% matrigel (BD Biosciences, Bedford, MA). When tumors reached the appropriate tumor volume, mice were size-matched (day 14) into treatment and control groups with treatment commencing the following day. Each animal was ear-tagged and followed individually throughout the
experiment. Tumor volume was estimated by twice weekly measurements of the length and width of the tumor by electronic calipers and applying the following equation: $V=L \times W^{2} / 2$. Compound 2 was formulated in $<1 \%$ DMSO, 5% Tween $80,30 \%$ propylene glycol, and $\sim 65 \%$ sterile 5% dextrose $(\mathrm{pH} \sim 3-4)$. Etoposide (Bedford Laboratories, Bedford, OH) was administered ip and formulated according to the manufacturer's recommendations.

4-(4-Isobutyl-4-hydroxy-piperidin-1-yl)-benzoic Acid Ethyl Ester (6a). A solution of i-butylmagnesium bromide ($3.6 \mathrm{~mL}, 2.0$ M solution in diethyl ether, 7.2 mmol) in diethyl ether $(30 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and treated dropwise with a solution of 4-(4-oxo-piperidin-1-yl)-benzoic acid ethyl ester ${ }^{22}$ (1.48 g, 6.0 mmol$)$ in a $1: 1$ mixture of diethyl ether : THF $(10 \mathrm{~mL})$. The reaction mixture was allowed to come to rt, stirred overnight, and diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The resulting mixture was diluted with EtOAc, and the organic phase washed with water and brine and dried over MgSO_{4}. The volatiles were removed in vacuo, and the remaining residue was purified by silica gel chromatography eluting with $20 \% \mathrm{EtOAc}$ in hexanes to yield $370 \mathrm{mg}(20 \%)$ of $\mathbf{6 a}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.75(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.58$ $(\mathrm{d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.13-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.40-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.21-1.35(\mathrm{~m}, 5 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$. MS (DCI), m/z $306[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2,2-Dimethyl-propyl)-4-hydroxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (6b). 6b was prepared from 4-(4-oxo-piperidin-1-yl)-benzoic acid ethyl ester and neopentylmagnesium chloride using the procedure for the preparation of $\mathbf{6 a} \cdot{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.07-3.25(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{MS}(\mathrm{CI}), m / z 320[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-n-Butyl-4-hydroxy-piperidin-1-yl)-benzoic Acid Ethyl Ester (6c). 6c was prepared from 4-(4-oxo-piperidin-1-yl)-benzoic acid ethyl ester and n-butylmagnesium chloride using the procedure for the preparation of $\mathbf{6 a} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.75$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.40$ $(\mathrm{m}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 306[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Cyclohexylmethyl-4-hydroxy-piperidin-1-yl)-benzoic Acid Ethyl Ester (6d). 6d was prepared from 4-(4-oxo-piperidin-1-yl)benzoic acid ethyl ester and cyclohexylmethylmagnesium bromide using the procedure for the preparation of $\mathbf{6 a} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.17-4.27 (m, 2H), $4.14(\mathrm{~s}, 1 \mathrm{H}), 3.49-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.26$ $(\mathrm{m}, 2 \mathrm{H}), 1.74(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.41-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.04-$ $1.36(\mathrm{~m}, 6 \mathrm{H}), 0.83-1.00(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}), m / z 346[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Benzyl-4-hydroxy-piperidin-1-yl)-benzoic Acid Ethyl Ester (6e). 6e was prepared from 4-(4-oxo-piperidin-1-yl)-benzoic acid ethyl ester and benzylmagnesium chloride using the procedure for the preparation of $\mathbf{6 a} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.74$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.42(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.05-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 2 \mathrm{H}), 1.37-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.18-1.34$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{CI}), m / z 340[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Chlorobenzyl)-4-hydroxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (6f). $6 \mathbf{f}$ was prepared from 4-(4-oxo-piperidin-1-yl)benzoic acid ethyl ester and 2-chlorobenzylmagnesium chloride using the procedure for the preparation of $\mathbf{6 a} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.18-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.30$ $(\mathrm{m}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}$, $2 \mathrm{H}), 1.44-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}), \mathrm{m} / \mathrm{z}$ $374[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(3-Chlorobenzyl)-4-hydroxy-piperidin-1-yl]-benzoic Acid Ethyl Ester ($\mathbf{6 g}$). $\mathbf{6 g}$ was prepared from 4-(4-oxo-piperidin-1-yl)benzoic acid ethyl ester and 3-chlorobenzylmagnesium chloride using the procedure for the preparation of $6 \mathbf{a} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.19$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}$,
$2 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.05-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 2 \mathrm{H}), 1.48-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.37-$ $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}), m / z 374[\mathrm{M}+$ $\mathrm{H}]^{+}$.

4-[4-(4-Chlorobenzyl)-4-hydroxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (6h). 6h was prepared from 4-(4-oxo-piperidin-1-yl)benzoic acid ethyl ester and 4-chlorobenzylmagnesium chloride using the procedure for the preparation of $\mathbf{6 a} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H})$, $1.47-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. MS (DCI), $m / z 374[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Fluorobenzyl)-4-hydroxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (6i). 6i was prepared from 4-(4-oxo-piperidin-1-yl)benzoic acid ethyl ester and 2-fluorobenzylmagnesium chloride using the procedure for the preparation of $\mathbf{6 a} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.20-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.53$ $(\mathrm{s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.23$ $(\mathrm{m}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 2 \mathrm{H}), 1.53-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.54(\mathrm{~m}, 2 \mathrm{H})$, $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}), \mathrm{m} / \mathrm{z} 358[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Methylbenzyl)-4-hydroxy-piperidin-1-yl]-benzoic Acid Ethyl Ester ($\mathbf{6 j}$). $\mathbf{6 j}$ was prepared from 4-(4-oxo-piperidin-1-yl)benzoic acid ethyl ester and 2-methylbenzylmagnesium chloride using the procedure for the preparation of $6 \mathbf{a} \cdot{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.73(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.02-$ $7.15(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.04-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.74$ $(\mathrm{s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. MS (DCI), m/z $354[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Methoxybenzyl)-4-hydroxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (6k). 6k was prepared from 4-(4-oxo-piperidin-1-yl)benzoic acid ethyl ester and 2-methoxybenzylmagnesium chloride using the procedure for the preparation of $\mathbf{6 a} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.89-$ $6.96(\mathrm{~m}, 3 \mathrm{H}), 6.82-6.88(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.21(\mathrm{~m}, 2 \mathrm{H})$, $2.74(\mathrm{~s}, 2 \mathrm{H}), 1.50-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}), m / z 370[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Bromobenzyl)-4-hydroxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (61). 61 was prepared from 4-(4-oxo-piperidin-1-yl)benzoic acid ethyl ester and 2-bromobenzylmagnesium bromide using the procedure for the preparation of $\mathbf{6 a} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.10-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=$ 7.1 Hz, 2H), 3.67 (d, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.06-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.92$ $(\mathrm{s}, 2 \mathrm{H}), 1.56-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}), m / z 420[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Biphenyl-2ylmethyl-4-hydroxy-piperidin-1-yl]-benzoic Acid Ethyl Ester ($\mathbf{6 m}$). $\mathbf{6 m}$ was prepared from 4-(4-oxo-piperidin-1-yl)-benzoic acid ethyl ester and 2-phenylbenzylmagnesium bromide using the procedure for the preparation of $\mathbf{6 a} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.81(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.17-4.25(\mathrm{~m}, 2 \mathrm{H})$, $3.71-3.78(\mathrm{~m}, 2 \mathrm{H}), 2.93-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=$ $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.23-1.30(\mathrm{~m}, 3 \mathrm{H})$. MS (DCI), m/z $416[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Biphenyl-4ylmethyl-4-hydroxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (6n). 6n was prepared from 4-(4-oxo-piperidin-1-yl)benzoic acid ethyl ester and 4-phenylbenzylmagnesium bromide using the procedure for the preparation of $\mathbf{6 a} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.56$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.95$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.17-4.26(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{t}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.12-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.75$ $(\mathrm{s}, 2 \mathrm{H}), 1.53-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}), m / z 416[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Isobutyl-4-methoxy-piperidin-1-yl)-benzoic Acid Ethyl Ester (7a). A solution of the $\mathbf{6 a}(370 \mathrm{mg}, 1.2 \mathrm{mmol})$ in THF (5
$\mathrm{mL})$ was treated with $\mathrm{NaH}(96 \mathrm{mg}, 2.4 \mathrm{mmol}, 60 \%$ dispersion in mineral oil), heated to $50^{\circ} \mathrm{C}$ for 2 h , and treated with HMPA (1 $\mathrm{mL})$ followed by MeI (1 mL). The reaction mixture was refluxed overnight, cooled to $0^{\circ} \mathrm{C}$, and diluted with saturated aqueous NaHSO_{4} solution $(10 \mathrm{~mL})$. The resulting two-phase mixture was separated, the aqueous phase was extracted twice with ether, and the combined organic layers washed with water and brine. After drying over MgSO_{4}, the mixture was concentrated in vacuo and purified by silica gel chromatography eluting with $15 \% \mathrm{EtOAc}$ in hexanes to yield $190 \mathrm{mg}(49 \%)$ of 7a. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 7.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}), 1.70-$ $1.85(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 320[\mathrm{M}+$ $\mathrm{H}{ }^{+}$.

4-[4-(2,2-Dimethyl-propyl)-4-methoxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (7b). 7b was prepared from 6b using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 7.75(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H})$, $1.89(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 0.98 (s, 9H). MS (DCI) m/z $334[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-n-Butyl-4-methoxy-piperidin-1-yl)-benzoic Acid Ethyl Ester (7c). 7c was prepared from $6 \mathbf{c}$ using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.76$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.46$ $(\mathrm{m}, 4 \mathrm{H}), 1.20-1.33(\mathrm{~m}, 7 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}$ (ESI) $\mathrm{m} / \mathrm{z} 320[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Cyclohexylmethyl-4-methoxy-piperidin-1-yl)-benzoic Acid Ethyl Ester (7d). 7d was prepared from $\mathbf{6 d}$ using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 7.75(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}), 1.77$ (m, 2H), 0.89-1.68 (m, 18H). MS (ESI) m/z. $360[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Benzyl-4-methoxy-piperidin-1-yl)-benzoic Acid Ethyl Ester (7e). 7e was prepared from 6 e using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.74$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H})$, $3.02(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 354[\mathrm{M}+\mathrm{H}]^{+}$

4-[4-(2-Chlorobenzyl)-4-methoxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (7f). $\mathbf{7 f}$ was prepared from $\mathbf{6 f}$ using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 7.73(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=7.4 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.65(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}$, $2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}) \mathrm{m} / \mathrm{z} 388[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(3-Chlorobenzyl)-4-methoxy-piperidin-1-yl]-benzoic Acid Ethyl Ester ($7 \mathbf{g}$). 7 g was prepared from 6 g using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 6.95$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.29$ $(\mathrm{s}, 3 \mathrm{H}), 3.03(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.51$ $(\mathrm{m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}) m / z 388[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(4-Chlorobenzyl)-4-methoxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (7h). 7h was prepared from $\mathbf{6 h}$ using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 2 \mathrm{H}), 1.67$ $(\mathrm{m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}) \mathrm{m} / \mathrm{z}$ $388[\mathrm{M}+\mathrm{H}]^{+}$

4-[4-(2-Fluorobenzyl)-4-methoxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (7i). $\mathbf{7 i}$ was prepared from $\mathbf{6 i}$ using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 7.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~m}, 2 \mathrm{H}), 6.94$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H}), 3.29$ $(\mathrm{s}, 3 \mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H})$, $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 372[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Methylbenzyl)-4-methoxy-piperidin-1-yl]-benzoic Acid Ethyl Ester ($\mathbf{7 j}$). $\mathbf{7 j}$ was prepared from $\mathbf{6 j}$ using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 7.73(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.15(\mathrm{~m}$, $3 \mathrm{H}), 6.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.65(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 2 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$). MS (DCI), m/z $368[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Methoxybenzyl)-4-methoxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (7 k). 7 k was prepared from $\mathbf{6 k}$ using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 7.73(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 6.93$ $(\mathrm{m}, 3 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.61$ $(\mathrm{m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.49(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 384[\mathrm{M}+$ $\mathrm{H}]^{+}$.

4-[4-(2-Bromobenzyl)-4-methoxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (71). 71 was prepared from 61 using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 7.76(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.17$ $(\mathrm{m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.67$ $(\mathrm{m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H})$, $1.57(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 432[\mathrm{M}+$ $\mathrm{H}]^{+}$.
4-(4-Biphenyl-2ylmethyl-4-methoxy-piperidin-1-yl]-benzoic Acid Ethyl Ester (7 m). $\mathbf{7 m}$ was prepared from $\mathbf{6 m}$ using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 7.69(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.45(\mathrm{~m}, 8 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H})$, $6.83(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H})$, $3.04(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 430[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Biphenyl-4ylmethyl-4-methoxy-piperidin-1-yl]-benzoic Acid Ethyl Ester ($\mathbf{7 n}$). $\mathbf{7 n}$ was prepared from $\mathbf{6 n}$ using the procedure described for the preparation of 7a. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right) \delta 7.73(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.03$ $(\mathrm{m}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$). MS (ESI) $m / z 430[\mathrm{M}+\mathrm{H}]^{+}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-[4-(4-isobutyl-4-methoxy-piperidin-1-yl)-benzoyl]-3-nitrobenzenesulfonamide, Trifluoroacetate Salt, (8a). A solution of 7a $(190 \mathrm{mg}, 0.59 \mathrm{mmol})$ and $\mathrm{LiOH}(43 \mathrm{mg}, 1.8 \mathrm{mmol})$ in $1: 1: 1 \mathrm{H}_{2} \mathrm{O} /$ $\mathrm{MeOH} / \mathrm{THF}(15 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ overnight. After removal of the volatiles in vacuo, the residue was acidified with 1 M NaHSO_{4} solution (5 mL) and extracted with EtOAc. The organic layer was dried over MgSO_{4} and concentrated to yield 170 mg (98%) of the intermediate acid that was used without further purification.
A solution of the above intermediate acid ($47 \mathrm{mg}, 0.16 \mathrm{mmol}$), EDCI ($70 \mathrm{mg}, 0.36 \mathrm{mmol}$), DMAP ($44 \mathrm{mg}, 0.36 \mathrm{mmol}$), and 4 (74 $\mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was stirred for 12 h and the mixture partitioned between water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed twice with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and dried over MgSO_{4}. After concentration, the residue was purified by reversed phase HPLC to yield $64 \mathrm{mg}(56 \%)$ of $\mathbf{8 a} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 11.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.27$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ (dd, $J=9.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J$ $=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 3.02-$ $3.18(\mathrm{~m}, 7 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}$, $1 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 6 H). MS (ESI) $\mathrm{m} / \mathrm{z} 696[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}_{2}\right.$. $\left.1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(2,2-dimethyl-propyl)-4-methoxy-piperidin-1-yl]-benzoyl\}-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, ($\mathbf{8 b}$). 8b was prepared from $7 \mathbf{b}$ using the procedure described for the preparation of 8a. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 11.95$ (br s, 1 H), 9.48 (br $\mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (dd, $J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H})$,
$7.09-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.62$ (m, 2H), 3.39 (d, J=6.2 Hz, 2H), 3.15 (m, 2H), $3.10(\mathrm{~s}, 3 \mathrm{H}), 3.02$ $(\mathrm{m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H})$, $1.41(\mathrm{~s}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H})$. MS (ESI) $m / z 710(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-[4-(4-Butyl-4-methoxy-piperidin-1-yl)-benzoyl]-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitrobenzenesulfonamide, Trifluoroacetate Salt, (8c). 8c was prepared from $\mathbf{7 c}$ using the procedure described for the preparation of $\mathbf{8 a}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.98$ (br s, 1H), 9.40 (br s, $1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}$, $J=9.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.25(\mathrm{~m}$, $6 \mathrm{H}), 6.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 2 \mathrm{H}), 3.39$ $(\mathrm{m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~m}, 6 \mathrm{H})$, $2.15(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI) $m / z 696(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}_{2}\right.$ - $\left.1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-[4-(4-Cyclohexylmethyl-4-methoxy-piperidin-1-yl)-benzoyl]-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, (8d). 8d was prepared from $7 \mathbf{d}$ using the procedure described for the preparation of 8a. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.98$ (br s, 1H), 9.41 (br $\mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ (dd, $J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H})$, $7.08-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.59$ $(\mathrm{m}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H})$, $2.75(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.65$ $(\mathrm{m}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{~m}, 2 \mathrm{H})$, $1.10(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI) $m / z 736(\mathrm{M}-\mathrm{H})^{-}$.
N-[4-(4-Benzyl-4-methoxy-piperidin-1-yl)-benzoyl]-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitrobenzenesulfonamide, Trifluoroacetate Salt, (8e). 8e was prepared from $\mathbf{7 e}$ using the procedure described for the preparation of $\mathbf{8 a}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.97$ (br s, 1 H), 9.43 (br s, $1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}$, $J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.29(\mathrm{~m}$, $4 \mathrm{H}), 7.09-7.21(\mathrm{~m}, 7 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H})$, 3.63 (m, 2H), 3.39 (d, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.28 (s, 3H), 3.06-3.20 $(\mathrm{m}, 2 \mathrm{H}), 2.97-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.08-$ $2.19(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.53(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI) m/z $730(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 1.4 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-\{4-[4-(2-Chloro-benzyl)-4-methoxy-piperidin-1-yl]-benzoyl\}-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, (8f). 8 f was prepared from $7 \mathbf{f}$ using the procedure described for the preparation of 8a. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.40(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (dd, $J=9.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H})$, $7.08-7.34(\mathrm{~m}, 9 \mathrm{H}), 6.91(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.67$ $(\mathrm{m}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.19(\mathrm{~m}, 5 \mathrm{H}), 2.91-3.03(\mathrm{~m}, 4 \mathrm{H})$, $2.74(\mathrm{~m}, 6 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI})$ $m / z 764(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{ClN}_{5} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 2.0 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}$, N.
N - 4 -[4-(3-Chloro-benzyl)-4-methoxy-piperidin-1-yl]-benzoyl\}-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, ($\mathbf{8 g}$). 8 g was prepared from 7 g using the procedure described for the preparation of 8a. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 11.98$ (br s, 1 H), 9.33 (br $\mathrm{s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ (dd, $J=9.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.32$ $(\mathrm{m}, 10 \mathrm{H}), 6.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H})$, $3.39(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.20(\mathrm{~m}, 5 \mathrm{H}), 3.01(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{~s}, 2 \mathrm{H}), 2.74$ ($\mathrm{s}, 6 \mathrm{H}$), $2.13(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}$ (ESI) m/z $764(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{ClN}_{5} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N - 4 -[4-(4-Chloro-benzyl)-4-methoxy-piperidin-1-yl]-benzoyl\}-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonami de, Trifluoroacetate Salt, ($\mathbf{8 h}$). $\mathbf{8 h}$ was prepared from 7 h using the procedure described for the preparation of 8a. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.98$ (br s, 1 H), 9.35 (br $\mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ (dd, $J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H})$,
$7.09-7.26(\mathrm{~m}, 8 \mathrm{H}), 6.92(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.63$ $(\mathrm{m}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.20(\mathrm{~m}, 5 \mathrm{H}), 3.01(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}$, $2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}$ (ESI) $m / z 766[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{ClN}_{5} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot 1.5\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-\{4-[4-(2-Fluoro-benzyl)-4-methoxy-piperidin-1-yl]-benzoyl\}-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, Hydrochloride Salt, (8i). 8i was prepared from 7i using the procedure described for the preparation of $8 \mathbf{a}$. The resulting product was dissolved in 4 N HCl in dioxane and concentrated to provide the HCl salt. ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 11.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=9.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.30(\mathrm{~m}, 10 \mathrm{H}), 6.92(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.18(\mathrm{~m}$, $5 \mathrm{H}), 2.99(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{~m}, 6 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 1.71$ $(\mathrm{m}, 2 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 748(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{FN}_{5} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 2 \mathrm{HCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-\{4-[4-Methoxy-4-(2-methylbenzyl)-piperidin-1-yl]-benzoyl\}-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, (8j). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.98(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.71$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.19(\mathrm{~m}, 7 \mathrm{H}), 6.90$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.34-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.90-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.08-$ $2.19(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.56(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}$ (ESI), $m / z 744[\mathrm{M}-\mathrm{H}]^{-}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-methoxy-4-(2-methoxy-benzyl)-piperidin-1-yl]-benzoyl\}-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, ($\mathbf{8 k}$). 8k was prepared from $7 \mathbf{k}$ using the procedure described for the preparation of 8a. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.40(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ $(\mathrm{dd}, J=9.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.27$ $(\mathrm{m}, 8 \mathrm{H}), 6.82-6.97(\mathrm{~m}, 4 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~m}$, $2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 2.79$ $(\mathrm{s}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI) m/z $760(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{39} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ C, H, N.
N-\{4-[4-(2-Bromo-benzyl)-4-methoxy-piperidin-1-yl]-benzoyl\}-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, (81). 81 was prepared from 71 using the procedure described for the preparation of 8a. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.99$ (br s, 1 H), 9.32 (br $\mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ $(\mathrm{dd}, J=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.91$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H})$, $3.31(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 2.92-3.03(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.14$ $(\mathrm{m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 810(\mathrm{M}-$ $\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{BrN}_{5} \mathrm{O}_{7} \mathrm{~S}_{2} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-[4-(4-Biphenyl-2-ylmethyl-4-methoxy-piperidin-1-yl)-ben-zoyl]-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propyl-amino)-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, (8m). $\mathbf{8 m}$ was prepared from 7 m using the procedure described for the preparation of 8a. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.96$ (br s, $1 \mathrm{H}), 9.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{dd}, J=9.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.09-7.44(\mathrm{~m}, 15 \mathrm{H}), 6.81(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.39$ $(\mathrm{m}, 4 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{~m}, 2 \mathrm{H})$, $2.73(\mathrm{~m}, 6 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}$ (ESI) $m / z 806(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-[4-(4-Biphenyl-4-ylmethyl-4-methoxy-piperidin-1-yl)-ben-zoyl]-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propyl-amino)-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, (8n). 8n was prepared from $7 n$ using the procedure described for the preparation of 8a. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.98$ (br s, $1 \mathrm{H}), 9.32$ (br s, 1H), $8.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.86(\mathrm{dd}, J=9.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$
$(\mathrm{m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H})$, $7.24(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~m}$, $1 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.96-3.20(\mathrm{~m}, 4 \mathrm{H})$, $2.83(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}$, 2H). MS (ESI) m/z $806(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 1.25\right.$ $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[4-(4-Fluoro-benzylidene)-piperidin-1-yl]-benzoic Acid, (9a). A solution of triphenylphosphine $(5.24 \mathrm{~g}, 20 \mathrm{mmol})$ and 4-fluorobenzyl bromide ($2.5 \mathrm{~mL}, 20 \mathrm{mmol}$) was refluxed overnight in toluene $(50 \mathrm{~mL})$ and allowed to cool to room temperature, and the resulting precipitate was collected by filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo to yield 8.42 g (93\%) (4-fluorobenzyl)-triphenylphosphonium bromide as a white solid.

A suspension of sodium hydride ($220 \mathrm{mg}, 5.5 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in DMSO (20 mL) was heated for 1 h at $80^{\circ} \mathrm{C}$, cooled to $5^{\circ} \mathrm{C}$, and treated with (4-fluorobenzyl)-triphenylphosphonium bromide $(2.24 \mathrm{~g}, 5.5 \mathrm{mmol})$. The resulting red solution was stirred for 10 min and treated with $5(1.36 \mathrm{~g}, 5.5 \mathrm{mmol})$ and the reaction mixture heated for 3 h at $80^{\circ} \mathrm{C}$. After standing overnight at room temperature, the reaction mixture was poured into aqueous NaHSO_{4} solution and extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with water and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel chromatography eluting with a gradient from 10 to $20 \% \mathrm{EtOAc}$ in hexanes yielded $1.74 \mathrm{~g}(93 \%)$ of the intermediate ethyl ester as a white crystalline solid.

A solution of the intermediate ethyl ester $(1.74 \mathrm{~g}, 5.1 \mathrm{mmol})$ in 1 N aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$ and dioxane $(10 \mathrm{~mL})$ was heated at $90^{\circ} \mathrm{C}$ for 5 h . After concentration in vacuo, the residue was diluted in 1 M HCl and extracted with EtOAc. After drying the organic phase over MgSO_{4}, concentration yielded $1.37 \mathrm{~g}(86 \%)$ of $\mathbf{9 a} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.20$ (br s, 1 H), 7.76 (d, $J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.38(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~m}$, 2H). MS (ESI) $m / z 312[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Fluoro-benzylidene)-piperidin-1-yl]-benzoic Acid, (9b). 9b was prepared starting from 2-fluorobenzyl bromide using the procedure described for the preparation of $9 \mathrm{a} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 12.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-$ $7.35(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H})$, $3.43(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 312[\mathrm{M}$ $+\mathrm{H}]^{+}$.

4-[4-(2-Chloro-benzylidene)-piperidin-1-yl]-benzoic Acid, (9c). 9c was prepared starting from 2-chlorobenzyl bromide using the procedure described for the preparation of $9 \mathrm{a} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 12.79($ br s, 1 H$), 7.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.35(\mathrm{~m}, 3 \mathrm{H})$, $6.29(\mathrm{~s}, 1 \mathrm{H}), 2.81-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-$ $2.47(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.69$ (m, 2H). MS (ESI), $m / z 326[\mathrm{M}-\mathrm{H}]^{-}$.

4-[4-(4-Chloro-benzylidene)-piperidin-1-yl]-benzoic Acid, (9d). 9d was prepared starting from 4-chlorobenzyl bromide using the procedure described for the preparation of $9 \mathbf{a} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- $\left.d_{6}\right) \delta 12.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~m}$, $2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~m}$, $2 \mathrm{H}), 3.40(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 328$ $[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Trifluoromethyl-benzylidene)-piperidin-1-yl]-benzoic Acid, (9e). 9e was prepared starting from 2-trifluoromethylbenzyl bromide using the procedure described for the preparation of $9 \mathbf{a}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=7.8,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=5.8,5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.38(\mathrm{dd}, J=6.1,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{dd}, J=5.7,5.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.27(\mathrm{dd}, J=5.8,5.0 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 362[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(4-Trifluoromethyl-benzylidene)-piperidin-1-yl]-benzoic Acid, (9f). 9f was prepared starting from 4-trifluoromethylbenzyl bromide using the procedure described for the preparation of $9 \mathbf{a}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$,
$6.97(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~m}, 2 \mathrm{H})$, $2.56(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 362[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Methoxy-benzylidene)-piperidin-1-yl]-benzoic Acid, $(9 \mathrm{~g}) .9 \mathrm{~g}$ was prepared starting from 2-methoxybenzyl bromide using the procedure described for the preparation of $9 \mathbf{a} .{ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-7.00(\mathrm{~m}, 3 \mathrm{H})$, $6.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H})$, $3.40(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 4 \mathrm{H})$. MS (ESI) m/z $324[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Cyano-benzylidene)-piperidin-1-yl]-benzoic Acid, (9h). 9h was prepared starting from 2-cyanobenzyl bromide using the procedure described for the preparation of $9 \mathbf{a} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 12.24($ br s, 1 H$), 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 6.97$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 2.47$ $(\mathrm{m}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 319[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Pyridin-2-ylmethylene-piperidin-1-yl)-benzoic Acid, (9i). $9 \mathbf{i}$ was prepared starting from 2-(bromomethyl)pyridine using the procedure described for the preparation of $9 \mathbf{9} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 12.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.53(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.71(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~m}, 2 \mathrm{H})$, $3.05(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI) $\mathrm{m} / \mathrm{z} 295[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Pyridin-3-ylmethylene-piperidin-1-yl)-benzoic Acid, (9j). $\mathbf{9 j}$ was prepared starting from 4-(bromomethyl)pyridine using the procedure described for the preparation of $9 \mathbf{a} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 12.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.43(\mathrm{~m}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J=4.7,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=9.2,2 \mathrm{H}), 7.63(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 6.94$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~m}, 2 \mathrm{H}), 2.51$ (m, 2H), $2.45(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI) $m / z 295[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Biphenyl-2-ylmethylene-piperidin-1-yl)-benzoic Acid, (9k). 9k was prepared starting from 2-(bromomethyl)biphenyl using the procedure described for the preparation of $9 \mathrm{a} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 12.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.73(\mathrm{~m}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~m}$, $4 \mathrm{H}), 7.34(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~s}$, $1 \mathrm{H}), 3.40(\mathrm{dd}, J=6.1,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{dd}, J=6.2,5.0 \mathrm{~Hz}$, 2H), $2.28(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 370[\mathrm{M}+\mathrm{H}]^{+}$

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(4-fluoro-benzylidene)-piperidin-1-yl]-benzoyl\}-3-nitrobenzenesulfonamide, Hydrochloride Salt (10a). A solution of 9a $(0.81 \mathrm{~g}, 2.6 \mathrm{mmol}), 4(1.0 \mathrm{~g}, 2.4 \mathrm{mmol}), \mathrm{EDCI}(1.10 \mathrm{~g}, 5.7 \mathrm{mmol})$, and DMAP $(0.70 \mathrm{~g}, 5.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was stirred overnight and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous ammonium chloride. The organic phase was dried over MgSO_{4} and concentrated and the resulting residue purified by silica gel chromatography eluting with a gradient from $0-12 \% 7 \mathrm{~N} \mathrm{NH}_{3}$ in MeOH solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $1.21 \mathrm{~g}(72 \%) \mathbf{1 0 a}$ as a yellow foam. The hydrochloride salt was prepared by lyophilization of a frozen solution of the product in 2 N aqueous $\mathrm{HCl}(20 \mathrm{~mL})$ and $1: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.00$ (br s, 1H), $10.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=9.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.10-7.30(\mathrm{~m}, 10 \mathrm{H}), 6.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H})$, $4.22(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~m}$, $6 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 764(\mathrm{M}-\mathrm{H})^{-}$. MS (ESI) m/z. $716(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{FN}_{5} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 2 \mathrm{HCl} \cdot 2\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(2-fluoro-benzylidene)-piperidin-1-yl]-benzoyl\}-3-nitrobenzenesulfonamide, Trifluoroacetate Salt, (10b). A solution of 9b ($69 \mathrm{mg}, 0.22 \mathrm{mmol}), 4(85 \mathrm{mg}, 0.20 \mathrm{mmol})$, EDCI (84 mg , 0.44 mmol), and DMAP ($55 \mathrm{mg}, 0.44 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred overnight and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous ammonium chloride. The organic phase was dried over MgSO_{4} and concentrated and the resulting residue purified by reverse phase HPLC to yield $119 \mathrm{mg}(72 \%)$ of $\mathbf{1 0 b} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d ${ }_{6}$) $\delta 12.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=9.5,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.32(\mathrm{~m}, 10 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~m}$, $2 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.44(\mathrm{t}, J=5.4 \mathrm{~Hz}$,
$2 \mathrm{H}), 2.38(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 716(\mathrm{M}$ $-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{FN}_{5} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-\{4-[4-(2-Chloro-benzylidene)-piperidin-1-yl]-benzoyl\}-4-((R)-3-dimethyl amino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, (10c). 10c was prepared from 9c using the procedure described for the preparation of $\mathbf{1 0 b} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.00(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 9.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{dd}, J=9.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.32(\mathrm{~m}, 9 \mathrm{H}), 6.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.37(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~m}$, $2 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.44(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}) 2.14$ $(\mathrm{m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 732(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{ClN}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}\right.$ - $\left.1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-\{4-[4-(4-Chloro-benzylidene)-piperidin-1-yl]-benzoyl\}-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, (10d). 10d was prepared starting from 9d using the procedure described for the preparation of $\mathbf{1 0 b} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.00(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 9.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{dd}, J=9.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ $(\mathrm{m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.39$ $(\mathrm{m}, 2 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H})$, $2.14(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 732(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{ClN}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}\right.$ - $\left.1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro- N-\{4-[4-(2-trifluoromethyl-benzylidene)-piperidin-1-yl]-benzoyl\}-benzenesulfonamide, Trifluoroacetate Salt, (10e). 10e was prepared starting from 9 e using the procedure described for the preparation of $\mathbf{1 0 b} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.00$ (br s, 1H), $9.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=9.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.20$ $(\mathrm{m}, 4 \mathrm{H}), 6.96(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.52$ $(\mathrm{m}, 2 \mathrm{H}), 3.40(\mathrm{~m}, 4 \mathrm{H}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H})$, $2.24(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 766(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 2.0 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro- N-\{4-[4-(4-trifluoromethyl-benzylidene)-piperidin-1-yl]-benzoyl\}-benzenesulfonamide, Trifluoroacetate Salt, (10f). 10f was prepared starting from $9 f$ using the procedure described for the preparation of 10b. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.00$ (br s, 1H), $9.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=9.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}$, $2 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H})$, $4.19(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{~m}$, $2 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}$ (ESI) $\mathrm{m} / z 766(\mathrm{M}-\mathrm{H})^{-}$. MS (ESI) $\mathrm{m} / z 766(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro- N-\{4-[4-(2-methoxy-benzylidene)-piperidin-1-yl]-benzoyl\}benzenesulfonamide, Trifluoroacetate Salt, (10g). 10g was prepared starting from 9 g using the procedure described for the preparation of $\mathbf{1 0 b} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.00(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 9.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.87(\mathrm{dd}, J=9.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.09-7.26(\mathrm{~m}, 8 \mathrm{H}), 6.97(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.33$ $(\mathrm{s}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~m}, 2 \mathrm{H})$, $3.39(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~m}, 6 \mathrm{H}), 2.40(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~m}$, 2H). MS (ESI) $m / z 728(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 2.5\right.$ $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro- N-\{4-[4-(2-cyano-benzylidene)-piperidin-1-yl]-benzoyl\}benzenesulfonamide, Trifluoroacetate Salt, (10h). 10h was prepared starting from 9 h using the procedure described for the preparation of $\mathbf{1 0 b} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.00(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 9.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{dd}, J=9.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$
$(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.52$ $(\mathrm{s}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H})$, $3.13(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~m}$, 2H). MS (ESI) m/z $723(\mathrm{M}-\mathrm{H})^{-}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 1.5\right.$ $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro- N - 44 -[4-pyridin-2-ylmethylene-piperidin-1-yl]-benzoyl\}benzenesulfonamide, (10i). 10i was prepared starting from $9 \mathbf{i}$ using the procedure described for the preparation of $\mathbf{1 0 a} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.57(\mathrm{~m}, 1 \mathrm{H})$, $8.29(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.26(\mathrm{~m}, 6 \mathrm{H})$, $6.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H})$, $3.49(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~s}$, $6 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 699(\mathrm{M}-\mathrm{H})^{-}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro- N - 44 -[4-pyridin-3-ylmethylene-piperidin-1-yl]-benzoyl\}benzenesulfonamide, $(\mathbf{1 0} \mathbf{j}) . \mathbf{1 0} \mathbf{j}$ was prepared starting from $\mathbf{9 j}$ using the procedure described for the preparation of 10a. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.60$ (br s, $1 \mathrm{H}), 8.55(\mathrm{~m}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~m}, 1 \mathrm{H}), 7.87$ $(\mathrm{dd}, J=9.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.26(\mathrm{~m}, 7 \mathrm{H}), 6.97$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}), 3.48$ $(\mathrm{m}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~m}, 6 \mathrm{H}), 2.44-2.55(\mathrm{~m}$, 4H), 2.15 (m, 2H). MS (ESI) $m / z 699[\mathrm{M}-\mathrm{H}]^{-}$
N-[4-(4-Biphenyl-2-ylmethylene-piperidin-1-yl)-benzoyl]-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, Trifluoroacetate Salt, (10k). 10k was prepared starting from $9 \mathbf{k}$ using the procedure described for the preparation of 10b. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.00(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 9.38$ (br s, 1H), 8.55 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ (d, $J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{dd}, J=9.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10-7.43(\mathrm{~m}, 15 \mathrm{H}), 6.92(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.18$ $(\mathrm{m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 4 \mathrm{H}), 3.24(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H})$, $2.25(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}$ (ESI) $\mathrm{m} / \mathrm{z} 774[\mathrm{M}-\mathrm{H}]^{-}$.

Ethyl 4-(4-Methylenepiperidin-1-yl)benzoate, (11). To a suspension of $\mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{I}$ salt $(1.972 \mathrm{~g}, 4.858 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{nBuLi}(1.9 \mathrm{~mL}, 4.858 \mathrm{mmol})$ and stirred at 0 ${ }^{\circ} \mathrm{C}$ for 30 min . A solution of ketone $5(1.0 \mathrm{~g}, 4.049 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added dropwise, and the resulting solution was allowed to warm to r.t. over 2 h . The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, diluted with ethyl acetate. The layers were separated, and the aqueous layer was extracted with ethyl acetate $(100 \mathrm{~mL} \times 2)$. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated. The residue was purified by flash chromatography ($0-80 \%$ ethyl acetate-hexane) to give the desired product $11(784 \mathrm{mg}, 79 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 7.77(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}$, $2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.24(\mathrm{~m}$, $4 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}) m / z 246.1[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Methylenepiperidin-1-yl)benzoic Acid, (12). To a solution of ester 11 ($480 \mathrm{mg}, 1.959 \mathrm{mmol}$) in THF- $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL}-2$ $\mathrm{mL}-2 \mathrm{~mL})$ was added $\mathrm{LiOH}-\mathrm{H}_{2} \mathrm{O}(165 \mathrm{mg}, 3.918 \mathrm{mmol})$ and heated under reflux for 6 h . The solution was partitioned between ethyl acetate and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the layers were separated. The aqueous layer was extracted with ethyl acetate (100 $\mathrm{mL} \times 2$), and the combined organic layers were dried over MgSO_{4}. The solution was concentrated to give the desired product 12 (376 $\mathrm{mg}, 88 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.75(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~m}$, 4H). MS (DCI) $m / z 218.0[\mathrm{M}+\mathrm{H}]^{+}$.
(R)-N-(4-(4-(Dimethylamino)-1-(phenylthio)butan-2-ylamino)-3-nitrophenylsulfonyl)-4-(4-methylenepiperidin-1-yl)benzamide, (13). To a solution of carboxylic acid 12 (300 mg , $1.382 \mathrm{mmol})$ and sulfonamide $4(586 \mathrm{mg}, 1.382 \mathrm{mmol})$ in dichloromethane (7 mL) were added EDCI ($531 \mathrm{mg}, 2.764 \mathrm{mmol}$) and DMAP ($169 \mathrm{mg}, 1.382 \mathrm{mmol}$) and stirred at ambient temperature overnight. The solution was diluted with dichloromethane and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with dichloromethane $(50 \mathrm{~mL} \times 3)$, and the combined organic
layers were dried over MgSO_{4}. The solution was concentrated, and the residue was purified by flash chromatography $\left(0-10 \% 7 \mathrm{~N} \mathrm{NH}_{3}\right.$ in $\mathrm{MeOH}-\mathrm{DCM})$ to give the desired product $13(590 \mathrm{mg}, 69 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.46(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.74(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{br}, 6 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}$ (DCI) $\mathrm{m} / \mathrm{z} 624.3[\mathrm{M}+\mathrm{H}]^{+}$.
(R)-N-(4-(4-(Dimethylamino)-1-(phenylthio)butan-2-ylamino)-3-nitrophenylsulfonyl)-4-(3-phenyl-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl)benzamide, (14a). To a solution of alkene 13 (112 mg , 0.180 mmol) in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ were simultaneously added a solution of N-hydroxybenzimidoyl chloride ($84 \mathrm{mg}, 0.540 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ and a solution of triethylamine $(75 \mu \mathrm{~L}, 0.540$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ via syringe pump over 5 h . The solution was concentrated and the residue was purified by flash chromatography $\left(0-10 \% 7 \mathrm{~N} \mathrm{NH}_{3}\right.$ in $\left.\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ followed by HPLC (C8 reverse phase column, $20-80 \%$ acetonitrile- 0.1% TFA in water) to give the desired product $\mathbf{1 4 a}$ as TFA salt ($75 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.03$ (br s, 1 H), 9.51 (br s, $1 \mathrm{H}), 8.56(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}$, $J=9.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~m}, 2 \mathrm{H}), 7.45$ $(\mathrm{m}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.18(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{br}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 4 \mathrm{H}), 3.40(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 1.82(\mathrm{t}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}) . \mathrm{MS}$ (ESI) $m / z 743.4[\mathrm{M}+\mathrm{H}]^{+}$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$ $\left.\cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(R)-4-(3-Benzyl-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl)- N -(4-(4-(dimethylamino)-1-(phenylthio)butan-2-ylamino)-3-nitrophenylsulfonyl)benzamide, (14b). 14b was prepared from 13 and phenylacetohydroximoyl chloride according to the procedure for the preparation of $\mathbf{1 4 a} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 12.00$ (br s, 1H), $9.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=9.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{br}, 6 \mathrm{H}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 2.75$ $(\mathrm{s}, 6 \mathrm{H}), 2.66(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ $757.4[\mathrm{M}+\mathrm{H}]^{+}$. Anal. $\left(\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}$, H, N.

Ethyl 4-(2-Methyl-3-oxo-1-oxa-4,8-diazaspiro[4.5]decan-8-yl)benzoate, (15). A solution of ketone 5 ($500 \mathrm{mg}, 2.024 \mathrm{mmol}$) and lactamide ($198 \mathrm{mg}, 2.227 \mathrm{mmol}$) in benzene (5 mL) was treated with p-toluenesulfonic acid $(19 \mathrm{mg}, 0.101 \mathrm{mmol})$ and heated under reflux with azeotropic removal of water for 36 h . The reaction mixture was quenched with a few drops of triethylamine and concentrated. The residue was purified by flash chromatography $\left(0-80 \%\right.$ acetonitrile $\left.-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the desired product 15 (415 $\mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.02$ ($\mathrm{s}, 1 \mathrm{H}$), 7.78 $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{q}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 1.74$ (m, 4H), $1.27(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 319[\mathrm{M}+\mathrm{H}]^{+}$.

Ethyl 4-(4-Benzyl-2-methyl-3-oxo-1-oxa-4,8-diazaspiro[4.5]-decan-8-yl)benzoate, (16). To a solution of oxazolidinone 15 (30 $\mathrm{mg}, 0.0943 \mathrm{mmol})$ in THF (1 mL) was added $\mathrm{NaH}(5.7 \mathrm{mg}, 0.142$ $\mathrm{mmol})$ and stirred at r.t. for 20 min . Benzyl bromide ($17 \mu \mathrm{~L}, 0.141$ mmol) was added, and the solution was heated at $60^{\circ} \mathrm{C}$ overnight. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and partitioned between ethyl acetate and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated, and the aqueous layer was extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. The combined organic layers were dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography $\left(0-80 \%\right.$ acetonitrile $\left.-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the desired product $16(31 \mathrm{mg}, 81 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6}) $\delta 7.75$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.48$ $(\mathrm{m}, 3 \mathrm{H}), 4.23(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{dd}, J=13.1,2.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.04(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 409.1[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-Benzyl-2-methyl-3-oxo-1-oxa-4,8-diazaspiro[4.5]decan8 -yl)benzoic Acid, (17). 17 was prepared from 16 according to the procedure for the preparation of $\mathbf{1 2} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 12.24(\mathrm{br}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~m}$, $5 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{t}$, $J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{dd}, J=13.4$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI) m / z $381.1[\mathrm{M}+\mathrm{H}]^{+}$
(\boldsymbol{R})-4-(4-Benzyl-2-methyl-3-oxo-1-oxa-4,8-diazaspiro[4.5]decan-8-yl)- N -(4-(4-(dimethylamino)-1-(phenylthio)butan-2-ylamino)-3-nitrophenylsulfonyl)benzamide, (18). 18 was prepared from 17 according to the procedure for the preparation of 13. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.68(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=9.4,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 7 \mathrm{H}), 7.06(\mathrm{~m}, 3 \mathrm{H})$, 7.01 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~m}, 3 \mathrm{H})$, $4.17(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=14.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ $(\mathrm{m}, 5 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H})$, 1.61 (dd, $J=13.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~d}, 3 \mathrm{H}) . \mathrm{MS}$ (ESI) $m / z 787.4[\mathrm{M}+\mathrm{H}]^{+}$. Anal. $\left(\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}_{2} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$ $\left.\cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(R)-tert-Butyl 4-(4-(4-(4-(Dimethylamino)-1-(phenylthio)bu-tan-2-ylamino)-3-nitrophenylsulfonylcarbamoyl)phenyl)-piperazine-1-carboxylate, (19b). Compound 19a was prepared from 4-(4-(tert-butoxycarbonyl)piperazin-1-yl)benzoic acid according to the procedure described for the preparation of 8a. A solution of compound 19a in dioxane was treated with an excess of 4 M HCl in dioxane and stirred overnight. The reaction mixture was concentrated to near dryness and diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the resulting precipitate (19b) collected by filtration, dried in vacuo, and carried on to the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 12.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.09-9.28(\mathrm{~m}$, $2 \mathrm{H}), 8.54(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}$, $J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.08-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.35(\mathrm{~m}$, $1 \mathrm{H}), 3.55(\mathrm{~m}, 4 \mathrm{H}), 3.35-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.23(\mathrm{~m}, 4 \mathrm{H}), 3.06-$ $3.15(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.75(\mathrm{~m}, 6 \mathrm{H}), 2.11-2.24(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI), $\mathrm{m} / \mathrm{z} 611[\mathrm{M}-\mathrm{H}]^{-}$.
N-[4-(4-Benzoyl-piperazin-1-yl)-benzoyl]-4-((R)-3-dimethyl-amino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, (20). To a suspension of HCl salt of amine $\mathbf{1 9 b}$ (68.6 $\mathrm{mg}, 0.1 \mathrm{mmol}$) and triethylamine ($40.4 \mathrm{mg}, 56 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) in DMA (1.5 mL) was added benzoyl chloride ($16.9 \mathrm{mg}, 13.9 \mu \mathrm{~L}$, 0.12 mmol). The reaction mixture was shaken for 16 h , then concentrated, redisolved in DMSO/MeOH (1 mL), and purified by reverse phase preparative HPLC, providing 42 mg (51%) of TFA salt of 20. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 12.09$ (br s, 1 H), $9.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.87 (dd, $J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35-$ $7.50(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.33-3.42$ $(\mathrm{m}, 8 \mathrm{H}), 3.06-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.09-2.20(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI), m/z $715[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot\right.$ $\left.0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro- N - $\{4$-[4-(toluene-4-sulfonyl)-piperazin-1-yl]-benzoyl $\}$ benzenesulfonamide, (21). To a suspension of HCl salt of amine 19b ($68.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) and triethylamine ($40.4 \mathrm{mg}, 56 \mu \mathrm{~L}, 0.4$ $\mathrm{mmol})$ in DMA (1.5 mL) was added tosyl chloride ($22.9 \mathrm{mg}, 0.12$ mmol). The reaction mixture was shaken for 16 h , then concentrated, redisolved in DMSO/MeOH (1 mL), and purified by reverse phase preparative HPLC, providing $43 \mathrm{mg}(49 \%)$ of TFA salt of 21. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 12.09$ (br s, 1H), 9.56 (br s, $1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-$ $7.88(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.20(\mathrm{~m}, 4 \mathrm{H})$, $6.92(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.45(\mathrm{~m}, 6 \mathrm{H})$, $3.07-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.98(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, 2.09-2.18 (m, 2H). MS (ESI), m/z $765[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}_{3} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-\{4-[4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propyl-amino)-3-nitro-benzenesulfonylaminocarbonyl]-phenyl\}-piperazine-1-
carboxylic Acid Phenylamide, (22). To a suspension of HCl salt of amine $\mathbf{1 9 b}(68.6 \mathrm{mg}, 0.1 \mathrm{mmol})$ and triethylamine $(40.4 \mathrm{mg}, 56$ $\mu \mathrm{L}, 0.4 \mathrm{mmol}$) in DMA (1.5 mL) was added phenyl isocyanate ($14.3 \mathrm{mg}, 13.1 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$). The reaction mixture was shaken for 16 h , then concentrated, redisolved in DMSO/MeOH (1 mL), and purified by reverse phase preparative HPLC, providing 51 mg (60%) of TFA salt of $\mathbf{2 2}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 12.08$ (br s, 1H), $9.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.00(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.55-$ $3.63(\mathrm{~m}, 4 \mathrm{H}), 3.36-3.42(\mathrm{~m}, 6 \mathrm{H}), 3.07-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~s}$, $6 \mathrm{H}), 2.09-2.21$ (m, 2H). MS (ESI), m/z $730[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-[4-(4-Benzyl-piperazin-1-yl)-benzoyl]-4-((R)-3-dimethyl-amino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, (23a). To a suspension of $\mathbf{1 9 b}(34.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ and benzaldehyde ($10.6 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{MeOH} /$ dichloromethane ($1 / 1,2 \mathrm{~mL}$) was added DIEA until pH was adjusted to 5 followed by the addition of $\mathrm{MP}-\mathrm{BH}_{3} \mathrm{CN}(2.42 \mathrm{mmol} / \mathrm{g}, 83 \mathrm{mg}, 0.2 \mathrm{mmol})$. The reaction mixture was shaken for 16 h , the resin was removed by filtration and washed with $\mathrm{MeOH} /$ dichloromethane $(3 \times 5 \mathrm{~mL})$, and the combined organic layers were concentrated under reduced presure. The residue was purified by reverse phase preparative HPLC providing $20 \mathrm{mg}(43 \%)$ of 23a. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right) \delta 12.11(\mathrm{~s}, 1 \mathrm{H}), 10.25(\mathrm{~s}, 1 \mathrm{H}), 9.59(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.81 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.08-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H})$, $4.16-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.42-3.46(\mathrm{~m}, 4 \mathrm{H}), 3.39(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.03-3.28(\mathrm{~m}, 6 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 2.10-2.19(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI), m/z $701[\mathrm{M}-\mathrm{H}]^{-}$

4-(3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(2-methyl-benzyl)-piperazin-1-yl]-benzoyl\}-3-nitro-benzenesulfonamide, (23b). To a suspension of the piperazine 19b ($150 \mathrm{mg}, 0.22 \mathrm{mmol}$), 2-methylbenzaldhehyde ($32 \mathrm{mg}, 0.26 \mathrm{mmol}$), and DIPEA resin ($3.45 \mathrm{mmol} / \mathrm{g}, 127 \mathrm{mg}, 0.44 \mathrm{mmol}$) in dichloromethane/methanol ($1 / 1,2 \mathrm{~mL}$) was added sodium triacetoxyborohydride ($97 \mathrm{mg}, 0.46 \mathrm{mmol}$). The reaction mixture was shaken for 16 h , the resin was removed by filtration and washed with $\mathrm{MeOH} /$ dichloromethane $(3 \times 5 \mathrm{~mL})$, and the combined organic layers were concentrated under reduced presure. The mixture was purified by silica gel chromatography eluting with 20% methanol in dichloromethane to yield 23b in 29% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 8.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}$, $J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.35(\mathrm{~m}$, $2 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-4.15(\mathrm{~m}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.47(\mathrm{~s}, 2 \mathrm{H}), 3.33-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.10-3.23(\mathrm{~m}, 4 \mathrm{H}), 2.81(\mathrm{~m}$, $3 \mathrm{H}), 2.55(\mathrm{~s}, 5 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.94-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H})$. MS (ESI), $m / z 807[\mathrm{M}-\mathrm{H}]^{-}$

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(2-methoxy-benzyl)-piperazin-1-yl]-benzoyl\}-3-nitrobenzenesulfonamide, (23c). 23c was prepared from 19b and 2-methoxybenzaldehyde using the procedure described for 23a. (78% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.09$ (br s, 1H), $9.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.57(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.20$ $(\mathrm{m}, 5 \mathrm{H}), 7.03-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-4.24$ (m, 1H), 4.04 (br s, 2H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.39(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.04-3.27(\mathrm{~m}, 6 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 2.10-2.19(\mathrm{~m}$, $2 \mathrm{H})$. MS (ESI), $m / z 731[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 2.25 \mathrm{CF}_{3}-\right.$ $\left.\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(2-methylsulfanyl-benzyl)-piperazin-1-yl]-benzoyl\}-3-ni-tro-benzenesulfonamide, (23d). 23d was prepared from 19b and 2-methanesulfanyl-benzaldehyde using the procedure described for the preparation of 23b. (49% yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 8.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}$, $J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.38(\mathrm{~m}$,
$7 \mathrm{H}), 7.10-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.22-3.30(\mathrm{~m}, 6 \mathrm{H})$, $3.13-3.21(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H})$, 1.81-2.07 (m, 2H). MS (ESI), $m / z .747[\mathrm{M}-\mathrm{H}]^{-}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(2-methanesulfonyl-benzyl)-piperazin-1-yl]-benzoyl\}-3-nitro-benzenesulfonamide, (23e). 23e was prepared from 19b and 2-methylsulfonylbenzaldehyde ${ }^{36}$ using the procedure described for the preparation of $\mathbf{2 3 b}$. (36% yield). ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta 8.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.76(\mathrm{~m}$, $3 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.92(\mathrm{~m}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H})$, $3.44(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.40(\mathrm{~m}, 6 \mathrm{H}), 3.14-3.24(\mathrm{~m}, 4 \mathrm{H}), 2.82-3.00$ (m, 2H), $2.56(\mathrm{~s}, 6 \mathrm{H}), 1.98-2.13(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), m / z 779[\mathrm{M}$ $-\mathrm{H}]^{-}$

2-Cyclohexylamino-benzonitrile, (25). A solution of 2-fluorobenzonitrile $24(500 \mathrm{mg}, 4.2 \mathrm{mmol})$ and cyclohexylamine (1 mL) in DMSO (2 mL) was heated to $180^{\circ} \mathrm{C}$ in a Personal Chemistry microwave reactor for 15 min . The reaction was cooled and poured into ether (50 mL), and the solution was washed with 1 M HCl (3 $\times 10 \mathrm{~mL}$) and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield $650 \mathrm{mg}(79 \%)$ of $\mathbf{2 5} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=8.1,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.69$ $(\mathrm{m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), \mathrm{m} / \mathrm{z}$ $201[\mathrm{M}+\mathrm{H}]^{+}$.

2-Cyclohexylamino-benzaldehyde, (26). A solution of 25 (640 $\mathrm{mg}, 3.2 \mathrm{mmol}$) in toluene $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with 1 M DIBAL in toluene (8 mL), and the reaction mixture was stirred at room temperature for 3 h . The reaction was quenched with methanol $(5 \mathrm{~mL})$ and taken up in 1 M HCl solution $(20 \mathrm{~mL})$. The solution was extracted with EtOAc $(3 \times 25 \mathrm{~mL})$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude material was purified by chromatography on silica gel using 10% EtOAc/hexanes to yield $80 \mathrm{mg}(12 \%)$ of 26. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66(\mathrm{dd}, J=7.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H})$, $1.66(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), m / z 204$ [M $+\mathrm{H}]^{+}$
N-\{4-[4-(2-Cyclohexylamino-benzyl)-piperazin-1-yl]-benzoyl\}-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, (23f). 23f was prepared from 19b and 26 using the procedure described for the preparation of $\mathbf{2 3 b}$. (Yield 18%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.51$ (d, $J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.22(\mathrm{~m}, 5 \mathrm{H})$, $6.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.52(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.56$ $(\mathrm{m}, 2 \mathrm{H}), 3.37(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.21-3.28(\mathrm{~m}, 4 \mathrm{H}), 3.08-3.16$ $(\mathrm{m}, 4 \mathrm{H}), 2.70(\mathrm{~s}, 6 \mathrm{H}), 2.43-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.20(\mathrm{~m}, 2 \mathrm{H})$, $1.84-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.30-$ $1.40(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.29(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), m / z 798[\mathrm{M}-\mathrm{H}]^{-}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(2-morpholin-4-yl-benzyl)-piperazin-1-yl]-benzoyl\}-3-nitro-benzenesulfonamide, $\mathbf{(\mathbf { 2 3 g }}) . \mathbf{2 3 g}$ was prepared from $\mathbf{1 9 b}$ and 2-morpholin-4-yl-benzaldehyde using the procedure described for the preparation of 23b. (Yield 23%) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 8.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}$, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=7.5$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.02-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.79$ $(\mathrm{m}, 4 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.34-3.41(\mathrm{~m}, 4 \mathrm{H}), 3.25-3.28(\mathrm{~m}, 2 \mathrm{H})$, $3.13-3.21(\mathrm{~m}, 4 \mathrm{H}), 2.89-2.98(\mathrm{~m}, 4 \mathrm{H}), 2.77-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.52$ $(\mathrm{s}, 6 \mathrm{H}), 1.92-2.14(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), m / z 786[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{40} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-\{4-[4-(2-Cyclohexyl-benzyl)-piperazin-1-yl]-benzoyl\}-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, (23h). 23h was prepared from 19b and 2-cyclohexyl-benzaldehyde using the procedure described for the
preparation of 23a. (47% yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 8.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J$ $=9.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.06-7.28(\mathrm{~m}, 7 \mathrm{H}), 6.92(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.98-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 3.32-3.39(\mathrm{~m}, 4 \mathrm{H}), 3.25-$ $3.29(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.20(\mathrm{~m}, 4 \mathrm{H}), 2.85-3.05(\mathrm{~m}, 3 \mathrm{H}), 2.62(\mathrm{~s}$, $6 \mathrm{H}), 2.00-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 4 \mathrm{H}), 1.24-1.50(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{MS}$ (ESI), $m / z 783[\mathrm{M}-\mathrm{H}]^{-}$

4-(4-Biphenyl-2-ylmethyl-piperazin-1-yl)-benzoic Acid Ethyl Ester, (28). 4-Piperazin-1-yl-benzoic acid ethyl ester (27) (0.20 g, $0.85 \mathrm{mmol})$ was dissolved in 1,4-dioxane (4 mL) and treated with 2-bromomethyl-biphenyl ($0.23 \mathrm{~g}, 0.94 \mathrm{mmol}$) and N, N-diisopropylethylamine $(0.17 \mathrm{~g}, 1.3 \mathrm{mmol})$. The solution was heated to 40 ${ }^{\circ} \mathrm{C}$ for 15 min , concentrated, and purified by silica gel chromatography eluting with 20% ethyl acetate in hexanes to yield 0.34 g (100%) of $\mathbf{2 8} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.76(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=6.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.24$ $(\mathrm{dd}, J=6.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.23$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.39$ $(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 401$ $[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Trifluoromethyl-benzyl)-piperazin-1-yl]-benzoic Acid Ethyl Ester, (29). 29 was prepared from 27 and 2-trifluoromethylbenzyl bromide according to the procedure described for the preparation of 28. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.62-7.90$ $(\mathrm{m}, 5 \mathrm{H}), 7.44-7.54(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.31-3.38(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.59(\mathrm{~m}$, $4 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 393[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2-Bromo-benzyl)-piperazin-1-yl]-benzoic Acid Ethyl Ester, (30). A solution of $27(1.200 \mathrm{~g}, 5.12 \mathrm{mmol})$ and 2-bromobenzaldehyde ($1.04 \mathrm{~g}, 5.63 \mathrm{mmol}$) in 1,2-dichloroethane $(25 \mathrm{~mL})$ was treated with sodium triacetoxyborohydride $(1.20 \mathrm{~g}, 5.63 \mathrm{mmol})$, and the reaction mixture was stirred for 75 min . The solution was filtered through silica gel, the eluent concentrated, and the crude material recrystallized from ethyl acetate to yield $1.84 \mathrm{~g}(89 \%)$ of 30. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.62(\mathrm{dd}, J=8.0, J=1.2,1 \mathrm{H}), 7.53(\mathrm{dd}, J=7.8, J=1.7,1 \mathrm{H})$, $7.40(\mathrm{td}, J=7.5, J=1.4,1 \mathrm{H}), 7.22(\mathrm{td}, J=7.5, J=1.8,1 \mathrm{H})$, $6.98(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H})$, $3.32(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.57(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$). MS (ESI) m / z 403/405 [M + H $]^{+}$.

4-[4-(2-Pyridin-3-yl-benzyl)-piperazin-1-yl]-benzoic Acid Eth$\mathbf{y l}$ Ester, (31). A suspension of $\mathbf{3 0}(0.20 \mathrm{~g}, 0.50 \mathrm{mmol}), 3$-pyridine boronic acid $(0.074 \mathrm{~g}, 0.60 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (cat.), and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(2 \mathrm{M}, 0.60 \mathrm{~mL})$ in DME/water/EtOH (7:3:2) (4 mL) was irradiated in a microwave reactor (Personal chemistry) at $150{ }^{\circ} \mathrm{C}$ for 3 min at normal absorbance solvent setting. The solvents were evaporated in vacuo, and the residue was partitioned between dichloromethane $(5 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$. The mixture was loaded on the celite cartridge $(5 \mathrm{~g})$ and washed with dichloromethane $(2 \times 5 \mathrm{~mL})$. The dichloromethane was evaporated and the residue redisolved in DMSO/MeOH $(1: 1,2.5 \mathrm{~mL})$ and purified by reverse phase HPLC to yield $0.10 \mathrm{~g}(50 \%)$ of 31. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $9.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.71(\mathrm{dd}, J=5.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.97$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.54-7.68(\mathrm{~m}, 3 \mathrm{H})$, $7.37-7.45(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.23$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.27(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.09$ (br s, 2H), 2.93 (br s, 2H), 1.28 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$). MS (ESI), m/z, 402 $[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(3'-Methoxy-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoic Acid Ethyl Ester, (32). 32 was prepared from 30 and 3-methoxy-phenylboronic according to the procedure described for the preparation of 31. (Yield 62%) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.52(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.83-7.05(\mathrm{~m}, 5 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.24$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 3.12 (br s, 2H), 2.87 (br s, 2H), 1.28 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI), $m / z 431[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(4'-Methoxy-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoic Acid Ethyl Ester, (33). 33 was prepared from 30 and 4-methoxy-phenylboronic acid according to the procedure described
for the preparation of $\mathbf{3 1}$. (Yield 80%) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.76(\mathrm{~m}, 1 \mathrm{H})$, $7.45-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H})$, $4.19-4.28(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H})$, $3.12(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 1.22-1.34(\mathrm{~m}, 3 \mathrm{H})$. MS (ESI), $m / z 431$ $[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(2'-Chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoic Acid Ethyl Ester, (34). 34 was prepared from 30 and 2-chlorophenylboronic acid according to the procedure described for the preparation of 31. (Yield 54%) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $10.02(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.67(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.35(\mathrm{~m}$, $1 \mathrm{H}), 6.97$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.29-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-4.16(\mathrm{~m}, 4 \mathrm{H}), 2.86-3.44(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$). MS (ESI), $m / z 435[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(3'-Chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoic Acid Ethyl Ester, (35). 35 was prepared from 30 and 3-chlorophenylboronic acid according to the procedure described for the preparation of 31. (Yield 73%) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ 10.11 (br s, 1H), 7.79 (m, 3H), 7.45-7.60 (m, 5H), 7.29-7.40 (m, $2 \mathrm{H}), 6.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.63-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.01-3.48(\mathrm{~m}, 4 \mathrm{H}), 2.92(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.28$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$). MS (ESI), $m / z 435[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(4'-Chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoic Acid Ethyl Ester, (36). A suspension of $\mathbf{3 0}$ ($13.83 \mathrm{~g}, 34.3 \mathrm{mmol}$), 4-chlorophenylboronic acid ($7.04 \mathrm{~g}, 45 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.48$ $\mathrm{g}, 0.686 \mathrm{mmol}, 2 \mathrm{~mol} \%$), and 2 M aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(22.5 \mathrm{~mL})$ in DME/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}(1: 1: 1,200 \mathrm{~mL})$ was heated at $90^{\circ} \mathrm{C}$ for 4.5 h . The mixture was diluted with ethyl acetate (200 mL), the layers were separated, and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The oily residue was purified by silica gel chromatography eluting with a gradient from 5% to 40% ethyl acetate in hexanes to yield $10.90 \mathrm{~g}(73 \%)$ of $\mathbf{3 6}$ as a colorless solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.36(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.49(\mathrm{~m}, 4 \mathrm{H}), 3.26(\mathrm{~m}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H})$, 4.32 (q, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.26(\mathrm{~m}$, $1 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.91(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H})$. MS (ESI) m / z. $435[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-[1, $\left.1^{\prime} ; \mathbf{4}^{\prime}, 1^{\prime \prime}\right]$ Terphenyl-2-ylmethyl-piperazin-1-yl)-benzoic Acid Ethyl Ester, (37). 37 was prepared from 30 and 4-biphenylboronic acid according to the procedure described for the preparation of 31. (Yield 38%) ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 9.74$ (br s, 1H), $8.08(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.83(\mathrm{~m}$, $7 \mathrm{H}), 7.35-7.60(\mathrm{~m}, 7 \mathrm{H}), 6.95$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.48$ (s, 1H), $4.14-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.95(\mathrm{~m}, 3 \mathrm{H}), 3.21-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.15$ (m, 2H), 2.93 (br s, 2H), 1.22-1.31 (m, 3H). MS (ESI), m/z 477 $[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(4'-Fluoro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoic Acid Ethyl Ester, (38). 38 was prepared from 30 and 4-fluorophenylboronic acid according to the procedure described for the preparation of 31. (Yield 66%) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.84-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.45(\mathrm{~m}, 4 \mathrm{H})$, $7.23-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.14-3.34(\mathrm{~m}, 4 \mathrm{H})$, $2.40-2.60(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI), m/z 419 $[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(4'-Trifluoromethyl-biphenyl-2-ylmethyl)-piperazin-1-yl]benzoic Acid Ethyl Ester, (39). 39 was prepared from 30 and 4-trifluoromethyl-phenylboronic acid according to the procedure described for the preparation of 31. (Yield 68\%) ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.60(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.15-3.30$ (m, 4H), 2.39-2.57 (m, 4H), 1.36 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI), $m / z 469[\mathrm{M}+\mathrm{H}]^{+}$.

4-[4-(4'-methanesulfonyl-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoic Acid Ethyl Ester, (40). 40 was prepared from 30 and 4-methanesulfonyl-phenylboronic acid according to the procedure described for the preparation of 31. (Yield 64\%) ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.68-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.27-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}$,

2H), $3.48(\mathrm{~s}, 2 \mathrm{H}), 3.21-3.25(\mathrm{~m}, 4 \mathrm{H}), 3.17$ (s, 3H), 2.43-2.47 (m, 4H), $1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI), $m / z 479[\mathrm{M}+\mathrm{H}]^{+}$.
N-[4-(4-Biphenyl-2-ylmethyl-piperazin-1-yl)-benzoyl]-4-((\boldsymbol{R}) -3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitrobenzenesulfonamide, (23i). A solution of $28(340 \mathrm{mg}, 0.85 \mathrm{mmol})$ in a 3:1:1 mixture of tetrahydrofuran/methanol/water (5 mL) was treated with lithium hydroxide monohydrate ($143 \mathrm{mg}, 3.40 \mathrm{mmol}$) and the solution stirred for 16 h . The reaction mixture was acidified with $4.0 \mathrm{M} \mathrm{HCl}(0.75 \mathrm{~mL})$ and extracted with dichloromethane. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by silica gel chromatography eluting with 20% methanol in dichloromethane to yield 200 mg (63%) of the intermediate acid. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ (dd, $J=7.5 \mathrm{~Hz}, 0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45-7.31$ (m, 7H), 7.24 (dd, $J=$ $7.5 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 3.23$ $(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.39(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}) . \mathrm{MS}$ (ESI) $m / z 371$ [$\mathrm{M}-\mathrm{H}]^{-}$.

A suspension of $\mathbf{4}(115 \mathrm{mg}, 0.27 \mathrm{mmol})$, the above intermediate acid ($112 \mathrm{mg}, 0.30 \mathrm{mmol}$), EDCI ($109 \mathrm{mg}, 0.57 \mathrm{mmol}$), and DMAP $(49 \mathrm{mg}, 0.41 \mathrm{mmol})$ in dichloromethane $(2.5 \mathrm{~mL})$ was stirred for 16 h and the reaction mixture concentrated. The resulting residue was purified by silica gel chromatography eluting with 20% methanol in dichloromethane to yield $80 \mathrm{mg}(38 \%)$ 23i. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.44$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.28 (d, $J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.57$ $(\mathrm{m}, 1 \mathrm{H}), 7.28-7.45(\mathrm{~m}, 10 \mathrm{H}), 7.20-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.21(\mathrm{~m}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98-$ $4.13(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.07-3.18(\mathrm{~m}, 4 \mathrm{H}), 2.62-2.82(\mathrm{~m}$, $2 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}), 2.34-2.41(\mathrm{~m}, 4 \mathrm{H}), 1.85-2.11(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI), m/z $777[\mathrm{M}-\mathrm{H}]^{-}$.

4-(3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(2-trifluoromethyl-benzyl)-piperazin-1-yl]-benzoyl\}-3-nitro-benzenesulfonamide, (23j). 23j was prepared from 29 according to the procedure used for the preparation of $\mathbf{2 3 i}$ and the product purified by reverse phase HPLC. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 12.09(\mathrm{~s}, 1 \mathrm{H}), 9.37(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $3 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.27(\mathrm{~m}, 6 \mathrm{H}), 6.98$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.12-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.78-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.48(\mathrm{~m}, 6 \mathrm{H}), 3.13$ (d, $J=13.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.81-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $6 \mathrm{H}), 2.07-2.21(\mathrm{~m}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$. MS (ESI), m/z $769[\mathrm{M}-$ $\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 2.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-N-\{4-[4-(2-pyridin-3-yl-benzyl)-piperazin-1-yl]-benzoyl\}benzenesulfonamide, ($\mathbf{2 3 k}$). A suspension of $31(0.10 \mathrm{~g}, 0.25$ $\mathrm{mmol})$ in a 3:1 mixture of dioxane/water (4 mL) was treated with lithium hydroxide ($0.75 \mathrm{mmol}, 0.75 \mathrm{~mL}$ of a 1 M aqueous solution) and heated at $80^{\circ} \mathrm{C}$ for 16 h . The solution was neutralized with 1 $\mathrm{M} \mathrm{HCl}(0.75 \mathrm{~mL})$ and the resulting precipitate collected by filtration, washed with water, and dried in vacuum oven for 24 h to yield 82 $\mathrm{mg}(80 \%)$ of the intermediate acid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 12.24(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{dd}, J=4.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-$ $7.56(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 3.14-3.24(\mathrm{~m}, 4 \mathrm{H}), 2.32-2.42(\mathrm{~m}$, 4H). MS (ESI), $m / z 374[\mathrm{M}+\mathrm{H}]^{+}$.

23k was prepared from the above intermediate acid according to the procedure for the preparation of 10a and the product purified by reverse phase HPLC. (Yield 44\%) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd_{6}) $\delta 12.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.66(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.62-8.73(\mathrm{~m}, 2 \mathrm{H}), 8.54$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.86$ (dd, $J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 3 \mathrm{H})$, $7.53-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.26(\mathrm{~m}, 6 \mathrm{H}), 6.93$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.13-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 3.39(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-3.24(\mathrm{~m}, 4 \mathrm{H}), 2.79-3.05$ $(\mathrm{m}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), \mathrm{m} / \mathrm{z}$ $778[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{41} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 3.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}$, H, N.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(3'-methoxy-biphenyl-2-ylmethyl)-piperazin-1-yl]-ben-zoyl\}-3-nitro-benzenesulfonamide, (231). 231 was prepared from
$\mathbf{3 2}$ according to the procedure described for the preparation of $\mathbf{2 3 i}$ and the product purified by reverse phase HPLC. (Yield 15%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 12.10$ (br s, 1 H), 9.58 (br s, 1H), $8.55(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=$ $2.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}$, $2 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 6.92$ $(\mathrm{m}, 4 \mathrm{H}), 4.31(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.15(\mathrm{~m}, 5 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{q}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$. MS (ESI), $m / z 807[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 2.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ C, H, N.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(4'-methoxy-biphenyl-2-ylmethyl)-piperazin-1-yl]-ben-zoyl\}-3-nitro-benzenesulfonamide, (23m). 23m was prepared from $\mathbf{3 3}$ according to the procedure described for the preparation of $\mathbf{2 3 i}$ and the product purified by reverse phase HPLC. (Yield 14%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.10$ (br s, 1H), 9.92 (br s, 1H), $9.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.86(\mathrm{dd}, J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.69-$ $7.75(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.25$ $(\mathrm{m}, 5 \mathrm{H}), 7.00-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.17-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.97-3.31(\mathrm{~m}, 6 \mathrm{H}), 2.77-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H})$, 2.15 (m, 2H). MS (ESI), m/z 807 [M - H] .
N-\{4-[4-(2'-Chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-ben-zoyl\}-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propyl-amino)-3-nitro-benzenesulfonamide, (23n). 23n was prepared from 34 according to the procedure described for the preparation of $\mathbf{2 3 i}$ and the product purified by reverse phase HPLC. (Yield 19%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.12$ (br s, 1H), 9.98 (br $\mathrm{s}, 1 \mathrm{H}), 9.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 3 \mathrm{H})$, $7.50-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.31(\mathrm{~m}, 7 \mathrm{H}), 6.94$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 4.12-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 3.39(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.89-3.27(\mathrm{~m}, 6 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H})$, $2.15(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$. MS (ESI), m/z $811[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{ClN}_{6} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 3 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-\{4-[4-(3'-Chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-ben-zoyl\}-4-((R)-3-dimethylamino-1-phenylsulfanylmethyl-propyl-amino)-3-nitro-benzenesulfonamide, (23o). 230 was prepared from 35 according to the procedure described for the preparation of $\mathbf{2 3 i}$ and the product purified by reverse phase HPLC. (Yield 19%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.09$ (br s, 1H), 9.88 (br $\mathrm{s}, 1 \mathrm{H}), 9.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.70 (br s, 1H), 7.41-7.59 (m, 5H), 7.28-7.40 (m, 2H), 7.05$7.27(\mathrm{~m}, 6 \mathrm{H}), 6.94(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.90$ $(\mathrm{s}, 5 \mathrm{H}), 3.39(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.04-3.31(\mathrm{~m}, 5 \mathrm{H}), 2.88(\mathrm{~s}$, $2 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), m / z 811[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{ClN}_{6} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 2.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-\{4-[4-(4'-Chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-ben-zoyl\}-4-(3-dim ethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide, (2). 2 was prepared from 36 according to the procedure described for the preparation of $\mathbf{2 3 i}$ and the product purified by silica gel chromatography eluting with a step gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ saturated with $\mathrm{NH}_{3}(\mathrm{~g}), 1 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ saturated with $\mathrm{NH}_{3}(\mathrm{~g}), 2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ saturated with $\mathrm{NH}_{3}(\mathrm{~g})$ by $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ saturated with $\mathrm{NH}_{3}(\mathrm{~g}), 10 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ saturated with $\mathrm{NH}_{3}(\mathrm{~g})$, and $15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ saturated with $\mathrm{NH}_{3}(\mathrm{~g})$ to yield $4.78 \mathrm{~g}(68 \%)$ of 2 as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.46(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=2,9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48-7.53(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.41(\mathrm{~m}, 9 \mathrm{H}), 6.88(\mathrm{~d}, J=10 \mathrm{~Hz}, 2 \mathrm{H})$, $6.79(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.38(\mathrm{~m}, 6 \mathrm{H}), 3.13$ $(\mathrm{m}, 4 \mathrm{H}), 2.73-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.92-2.13(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI) $m / z 813[\mathrm{M}+\mathrm{H}]^{+}$. Anal. $\left(\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Cl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro- N-[4-(4-[1, $\left.1^{\prime} ; 4^{\prime}, 1^{\prime \prime}\right]$ terphenyl-2-ylmethyl-piperazin-1-yl)-benzoyl]-benzenesulfonamide, (23p). 23p was prepared from 37 according to the procedure described for the preparation of $23 i$ and the product purified by reverse phase HPLC. (Yield 20\%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.10$ (br s, 1 H), 9.96 (br s, 1H), 9.56 (s,
$1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-$ $7.88(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.81(\mathrm{~m}, 7 \mathrm{H}), 7.52-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.52$ $(\mathrm{m}, 4 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.25(\mathrm{~m}, 6 \mathrm{H}), 6.93(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.42$ (br s, 2H), 4.12-4.24 (m, 1H), 3.83 (br s, 2H), 3.39 $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-3.33(\mathrm{~m}, 6 \mathrm{H}), 2.91(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.74(\mathrm{~s}$, $3 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.20(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), m / z 853[\mathrm{M}-$ $\mathrm{H}]^{-}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(4'-fluoro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoyl\}-3-nitro-benzenesulfonamide, (23q). 23q was prepared from 38 according to the procedure described for the preparation of $\mathbf{2 3 i}$ and the product purified by reverse phase HPLC. (Yield 52\%) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.65(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.54(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=9.2,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.69-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.25(\mathrm{~m}, 6 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 4.15-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.54-4.02(\mathrm{~m}, 4 \mathrm{H}), 3.39$ $(\mathrm{d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.02-3.28(\mathrm{~m}, 4 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{~s}$, $6 \mathrm{H}), 2.15(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), m / z 795[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{FN}_{6} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 3 \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro- N - $\{4$-[4-(4'-trifluoromethyl-biphenyl-2-ylmethyl)-piper-azin-1-yl]-benzoyl\}-benzenesulfonamide, (23r). $23 r$ was prepared from 39 according to the procedure described for the preparation of $\mathbf{2 3 i}$ and the product purified by reverse phase HPLC. (Yield $45 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.08(\mathrm{~s}, 1 \mathrm{H}), 9.60(\mathrm{~s}$, $2 \mathrm{H}), 8.54(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-$ $7.91(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.26$ $(\mathrm{m}, 6 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.41(\mathrm{~m}, 5 \mathrm{H}), 3.39(\mathrm{~d}, J$ $=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-3.33(\mathrm{~m}, 8 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{q}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), m / z 845[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 3\right.$ $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-((R)-3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-\{4-[4-(4'-methanesulfonyl-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoyl $\}$-3-nitro-benzenesulfonamide, (23s). 23 s was prepared from 40 according to the procedure described for the preparation of $\mathbf{2 3 i}$ and the product purified by reverse phase HPLC. (Yield $76 \%){ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.34-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.31(\mathrm{~m}, 7 \mathrm{H}), 6.65-6.78(\mathrm{~m}, 3 \mathrm{H}), 4.04(\mathrm{~s}$, $1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.07-3.14(\mathrm{~m}, 5 \mathrm{H})$, $2.79-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 6 \mathrm{H}), 2.40-2.49(\mathrm{~m}, 4 \mathrm{H}), 1.96-2.27$ (m, 2H). MS (ESI), m/z $855[\mathrm{M}-\mathrm{H}]^{-}$.

4-(2-Methyl-1-(phenylthio)propan-2-ylamino)-3-nitrobenzenesulfonamide, (42). A suspension of 2-methyl-1-(phenylthio)propan-2-amine ${ }^{24}(4.34 \mathrm{~g}, 20.0 \mathrm{mmol})$ and 4-fluoro-3-nitrobenzenesulfonamide ($4.40 \mathrm{~g}, 20.0 \mathrm{mmol}$) in DMSO/Hunig's base $(15 \mathrm{~mL} / 10 \mathrm{~mL})$ was stirred overnight. The upper layer (Hunig's base) was separated, and DMSO layer was poured to water $(200 \mathrm{~mL})$. The precipitated product was filtered off, washed with water, and dried in vacuum oven to yield $6.33 \mathrm{~g}(83 \%)$ of $42 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.40$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.03-7.20(\mathrm{~m}, 3 \mathrm{H}), 3.56$ $(\mathrm{s}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 380[\mathrm{M}-\mathrm{H}]^{-}$

4-(4,4-Dimethylpiperidin-1-yl)-N-(4-(2-methyl-1-(phenylthio)-propan-2-ylamino)-3-nitrophenylsulfonyl)benzamide, (1b). 1b was prepared from 42 and 4-(4,4-dimethylpiperidin-1-yl)benzoic acid^{18} according to the procedure described for the preparation of $\mathbf{2 3 i}$ and the product purified by reverse phase HPLC. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.95(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.82-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.91-$ $6.97(\mathrm{~m}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.29-3.40(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 1.34-$ $1.42(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), \mathrm{m} / z 595[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 0.25 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(4-Benzyl-4-methoxypiperidin-1-yl)- N-(4-(2-methyl-1-(phen-ylthio)propan-2-ylamino)-3-nitrophenylsulfonyl)benzamide, (43a). 43a was prepared from 42 and the acid derived from 7e according to the procedure described for the preparation of $\mathbf{2 3 i}$ and the product purified by reverse phase HPLC. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})
$\delta 11.95(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.87$ $(\mathrm{m}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ $7.29(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.99-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.96$ $(\mathrm{m}, 3 \mathrm{H}), 3.58-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.96-$ $3.08(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 2 \mathrm{H}), 1.68(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~s}$, $6 \mathrm{H}), 1.42-1.53(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{CI}), \mathrm{m} / \mathrm{z} 689[\mathrm{M}+\mathrm{H}]^{+}$. Anal. $\left(\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2} \cdot 0.2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(4-(Biphenyl-2-ylmethyl)piperazin-1-yl)- N-(4-(2-methyl-1-(phenylthio)propan-2-ylamino)-3-nitrophenylsulfonyl)benzamide, (43b). 43b was prepared from 42 and the acid derived from $\mathbf{2 8}$ according to the procedure described for the preparation of $\mathbf{2 3 i}$ and the product purified by reverse phase HPLC. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.05$ (br s, 1H), 9.78 (br s, 1 H), 8.53 ($\mathrm{s}, 1 \mathrm{H}$), $8.51(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=9.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.50(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.98-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.93(\mathrm{~m}$, $1 \mathrm{H}), 4.29(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.77(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.41-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.15(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 2.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}), m / z 734[\mathrm{M}-\mathrm{H}]^{-}$. Anal. $\left(\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Acknowledgment. The authors would like to thank the Abbott high-throughput purification and structural chemistry groups for compound purification and analytical services.

Supporting Information Available: Elemental analysis and HPLC data for all compounds and HSQC spectra of Bcl-xL in the presence and absence of $\mathbf{2}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) McDonald, E. R., III; El-Deiry, W. S. Mammalian cell death pathways: intrinsic and extrinsic. Death Recept. Cancer Ther. 2005, 1-41.
(2) Hanahan, D.; Weinberg, R. A. The hallmarks of cancer. Cell 2000, 100, 57-70.
(3) Cory, S.; Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2002, 2, 647-656.
(4) Borner, C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol. Immunol. 2003, 39, 615-647.
(5) van Delft, M. F.; Huang, D. C. S. How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res. 2006, 16, 203-213.
(6) Boatright, K. M.; Salvesen, G. S. Mechanisms of caspase activation. Curr. Opin. Cell Biol. 2003, 15, 725-731.
(7) Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 2002, 9, 459-470.
(8) Green, D. R.; Evan, G. I. A matter of life and death. Cancer Cell 2002, 1, 19-30.
(9) Amundson, S. A.; Myers, T. G.; Scudiero, D.; Kitada, S.; Reed, J. C. et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 2000, 60, 61016110.
(10) Muchmore, S. W.; Sattler, M.; Liang, H.; Meadows, R. P.; Harlan, J. E. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature (London, U.K.) 1996, 381, 335341.
(11) Petros, A. M.; Medek, A.; Nettesheim, D. G.; Kim, D. H.; Yoon, H. S. et al. Solution structure of the antiapoptotic protein bcl-2. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 3012-3017.
(12) Denisov, A. Y.; Madiraju, M. S. R.; Chen, G.; Khadir, A.; Beauparlant, P. et al. Solution Structure of Human BCL-w: Modulation of Ligand Binding by the C-Terminal Helix. J. Biol. Chem. 2003, 278, 21124-21128.
(13) Day, C. L.; Chen, L.; Richardson, S. J.; Harrison, P. J.; Huang, D. C. S. et al. Solution Structure of Prosurvival Mcl-1 and Characterization of Its Binding by Proapoptotic BH3-only Ligands. J. Biol. Chem. 2005, 280, 4738-4744.
(14) Sattler, M.; Liang, H.; Nettesheim, D.; Meadows, R. P.; Harlan, J. E. et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 1997, 275, 983-986.
(15) Petros, A. M.; Nettesheim, D. G.; Wang, Y.; Olejniczak, E. T.; Meadows, R. P. et al. Rationale for Bcl-x(L)/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci. 2000, 9, 2528-2534.
(16) Walensky, L. D.; Kung, A. L.; Escher, I.; Malia, T. J.; Barbuto, S. et al. Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 Helix. Science (Washington, DC) 2004, 305, 1466-1470.
(17) Elmore, S. W.; Oost, T. K.; Park, C.-M. Inhibitors of anti-apoptotic proteins for cancer therapy. Annu. Rep. Med. Chem. 2005, 40, 245262.
(18) Wendt, M. D.; Wang, S.; Kunzer, A.; McClellan, W. J.; Bruncko, M. et al. Discovery and Structure-Activity Relationship of Antagonists of B-Cell Lymphoma 2 Family Proteins with Chemopotentiation Activity in Vitro and in Vivo. J. Med. Chem. 2006, 49, 1165-1181.
(19) Shoemaker, A. R.; Oleksijew, A.; Bauch, J.; Belli, B. A.; Borre, T. et al. A Small-Molecule Inhibitor of Bcl-XL Potentiates the Activity of Cytotoxic Drugs In vitro and In vivo. Cancer Res. 2006, 66, 87318739.
(20) Petros, A. M.; Olejniczak, E. T.; Fesik, S. W. Structural biology of the Bcl-2 family of proteins. Biochim. Biophys. Acta, Mol. Cell Res. 2004, 1644, 83-94.
(21) Oltersdorf, T.; Elmore, S. W.; Shoemaker, A. R.; Armstrong, R. C.; Augeri, D. J. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature (London, U.K.) 2005, 435, 677681.
(22) Taylor, E. C.; Skotnicki, J. S. A convenient synthesis of 1-Aryl-4piperidones. Synthesis 1981, 606-608.
(23) Manikandan, S.; Jayashankaran, J.; Raghunathan, R. An Easy Access to Spiroisoxazoline [5,3] Flavan-4-one through 1,3-Dipolar Cycloaddition Reaction of Nitrile Oxide to Unusual Dipolarophiles. Synth. Commun. 2003, 33, 4063-4069.
(24) Zaman, S.; Mitsuru, K.; Abell, A. D. Synthesis of Trisubstituted Imidazoles by Palladium-Catalyzed Cyclization of O-Pentafluorobenzoylamidoximes: Application to Amino acid Mimetics with a C-Terminal Imidazole. Org. Lett. 2005, 7, 609-611.
(25) Kubota, D.; Ishikawa, M.; Yamamoto, M.; Murakami, S.; Hachisu, M. et al. Tricyclic pharmacophore-based molecules as novel integrin avb3 antagonists. Part 1: Design and synthesis of a lead compound exhibiting avb3/aIIbb3 dual antagonistic activity. Bioorg. Med. Chem. 2006, 14, 2089-2108.
(26) Augeri, D. J.; Baumeister, S. A.; Bruncko, M.; Dickman, D. A.; Ding, H. et al. Preparation of N-arylcarbonyl- and heteroarylcarbonyl benzenesulfonamide inhibitors of $\mathrm{Bcl}-\mathrm{Xl}$ and $\mathrm{Bcl}-2$ as promoters of apoptosis. US Pat. Appl. 957,276, pub. July 4, 2002.
(27) Nunez, G.; London, L.; Hockenbery, D.; Alexander, M.; McKearn, J. P. et al. Deregulated $\mathrm{Bcl}-2$ gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J. Immunol. 1990, 144, 3602-3610.
(28) Greco, F. A. Oral etoposide in lymphoma. Drugs 1999, 58, 35-41.
(29) Gordon, L. I.; Young, M.; Weller, E.; Habermann, T. M.; Winter, J. N. et al. A phase II trial of 200% ProMACE-CytaBOM in patients with previously untreated aggressive lymphomas: analysis of response, toxicity, and dose intensity. Blood 1999, 94, 33073314.
(30) Moskowitz, C. H.; Bertino, J. R.; Glassman, J. R.; Hedrick, E. E.; Hunte, S. et al. Ifosfamide, carboplatin, and etoposide: a highly effective cytoreduction and peripheral-blood progenitor-cell mobilization regimen for transplant-eligible patients with non-Hodgkin's lymphoma. J. Clin. Oncol. 1999, 17, 3776-3785.
(31) Koshland, D. E.; Jr. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 1958, 44, 98105.
(32) Bursavich, M. G.; Rich, D. H. Designing Non-Peptide Peptidomimetics in the 21st Century: Inhibitors Targeting Conformational Ensembles. J. Med. Chem. 2002, 45, 541-558.
(33) Goh, C.-S.; Milburn, D.; Gerstein, M. Conformational changes associated with protein-protein interactions. Curr. Opin. Struct. Biol. 2004, 14, 104-109.
(34) Brunger, A. T. X-PLOR Version 3.1.; Yale University Press: New Haven and London, 1992.
(35) Kuszewski, J.; Nilges, M.; Brunger, A. T. Sampling and efficiency of metric matrix distance geometry: A novel partial metrization algorithm. J. Biomol. NMR 1992, 2, 33-56.
(36) Sivasubramanian, S.; Ravichandran, K. Syntheses of o/ p-arylthiobenzaldehydes and o/p-methylsulfonylbenzaldehydes. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1991, 30B, 1148-1149.

JM061152T

[^0]: * To whom correspondence should be addressed. Steven W. Elmore, Abbott Laboratories, Dept. R4N6, Bldg. AP10-3, 100 Abbott Park Rd., Abbott Park, IL 60064-6101. Tel: (847) 937-7850. Fax: (847) 938-1004. E-mail: steve.elmore@abbott.com.
 ${ }^{\dagger}$ Abbott Laboratories.
 \ddagger Idun Pharmaceuticals.
 ${ }^{\S}$ These authors contributed equally to this work.
 ${ }^{a}$ Abbreviations: Bcl-2, B-cell lymphoma 2; Bax, Bcl-2 related protein X; Bak, Bcl-2 antagonist/killer; Bad, Bcl-2 antagonist of cell death; Bik, bcl-2 interacting killer; Bid, BH3 interacting death domain; Bim, Bcl-2 interacting mediator; Hrk, Harakiri; Bmf, Bcl-2 modifying factor; Bcl-xL, B-cell lymphoma x long; Mcl-1, myeloid cell leukemia 1; Bcl2-A1, B-cell lymphoma 2 related protein $\mathrm{A} 1 ; \mathrm{BH}, \mathrm{Bcl}$ homology; IL-3, interleukin 3; FPA, fluorescence polarization assay.

